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Abstract

This paper studies Susceptible-Infected (SI), Susceptible-Infected-Removed (SIR), and related epidemic
models in which infected individuals transition to an absorbing state, such as recovery or permanent
infectiousness. In addition to infectious diseases, these models are used for studying the diffusion of
innovations in which new behaviors, opinions, conventions, and technologies propagate from person to
person through a social network.

We focus on the key challenge of forecasting epidemic trajectory and outbreak sizes and show that they
can be predicted with a few samples from the network data. To this end, we propose a local algorithm for
epidemic estimation, and prove the estimator’s accuracy for both deterministic finite graphs and random
networks, given certain neighborhood constraints. Further, leveraging the theory of local graph limits, we
relate the time evolution in a sequence of graphs converging locally in probability with the epidemic in
the limit graph. Finally, we validate our findings with experiments on synthetic models and real-world
networks, such as Copenhagen and San Francisco’s SafeGraph data.

1 Introduction
Epidemic models, originally conceived by Bernoulli (1760) and gaining prominence during the Spanish flu
epidemics in the early 20th century (Ross and Hudson, 1917; Kermack and McKendrick, 1927), are developed
for and frequently applied to the analysis of the spread of infectious diseases. These models categorize
populations into various compartments such as Susceptible (S), Infectious (I), or Recovered (R), representing
potential flow patterns individuals may experience throughout the course of an epidemic. As instrumental
tools in public health policy formulation, they assist in forecasting various aspects of an epidemic, including
its spread, the total number of infections, and its duration (Eubank et al., 2004; Larson, 2007; Lloyd-Smith
et al., 2009; Heesterbeek et al., 2015; Scarpino and Petri, 2019). Furthermore, they aid in evaluating the
potential impacts of health interventions, serving as a guide in optimizing strategies such as the allocation
of limited vaccine resources or targeted closures, thus playing a central role in assessing the efficacy and
selection of countermeasures during public health emergencies (Wu et al., 2005; Mamani et al., 2013; Kaplan,
2020; Bastani et al., 2021; Birge et al., 2022; Acemoglu et al., 2023).

Extending beyond the scope of infectious diseases, epidemic models play a pivotal role in studying the
diffusion of innovations across social networks where new behaviors, opinions, conventions, and technologies
spread from person to person (Bass, 1969). Understanding the dynamics of such adoptions within the
underlying social networks can provide insights into potential “word-of-mouth” effects and the influence of
decisions made by peers and colleagues. Originating from social science research, this method of analysis has
informed our understanding of topics such as the diffusion of medical and agricultural innovations, the sway
of viral marketing on new product success, cascading failures in power systems, and the dissemination of
misinformation, presenting a critical avenue for anticipating the trajectory and impact of evolving trends
and phenomena (Kalish and Lilien, 1983; Ford et al., 2006; Feder and Umali, 1993; Lee et al., 2015; Amini
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and Minca, 2016; Yang et al., 2017; Mostagir and Siderius, 2023). Recent research further explores the
fundamental algorithmic problems in these systems, aiming to utilize network data to optimize marketing
strategies targeting influential network members, thereby enhancing the adoption rate of new products (Kempe
et al., 2003; Goel et al., 2016; Lobel et al., 2017; Ajorlou et al., 2018; Akbarpour et al., 2018; Manshadi et al.,
2020; Chin et al., 2022).

Predicting the trajectory of the epidemic is a central challenge for the above applications, primarily
approached through modeling-based techniques and simulation methods. The common mean-field models,
rooted in deterministic or stochastic PDEs, simplify the analysis by assuming uniform mixing among
individuals, but often overlook the intricacies of infection transmission networks (Bartlett, 1949; Britton et al.,
2019; Dimitrov and Meyers, 2010; Mukherjee and Seshadri, 2022). Random network models address this issue,
with numerous models rigorously studied in the literature (Bampo et al., 2008; Manshadi et al., 2020; Kiss
et al., 2017). However, selecting the right model for a specific population poses challenges, and parameter
fitting can cause major prediction variations if misspecified. Alternatively, simulation methods utilize granular
data like individual-level mobile tracking to trace epidemic progression (Bajardi et al., 2011; Wesolowski
et al., 2012; Chang et al., 2021). However, acquiring complete data is difficult, with these approaches also
presenting privacy concerns and lack of robustness when faced with incomplete data.

Here, we propose a distinct, data-driven approach that relies on the collection of small samples of network
data to predict an epidemic. Recent work has ventured into similar methodologies, particularly in seeding
strategies and estimating the final size of outbreak, (Eckles et al., 2022; Alimohammadi et al., 2022). However,
the scope of their work is more constrained than what we present here. For an in-depth comparison, see
Section 1.2.

Our proposed algorithm uses samples from the interaction networks, sufficient for approximating the
future trajectory of an epidemic. It leverages the local neighborhood of randomly chosen individuals to
create an estimator for the proportion of the population in each state of the epidemic at any given time. The
analysis of the algorithm provides a bound on the estimator’s error on any fixed graph. Importantly, under
certain assumptions, we offer an upper bound on the sample size necessary for tracing the time evolution
of the epidemic within an ε additive error; this bound is independent of the underlying network size. Our
findings, applicable to both deterministic graphs and a broad class of random network models, suggest that
accessing the local network structure of a few individuals is sufficient to estimate the time evolution of the
epidemic.

1.1 Summary of Our Contribution
Our work makes several key contributions:

1) Algorithmic Estimation: We introduce a local algorithm for estimating the epidemic’s time evolution
in a network by simulating the epidemic process in the neighborhood of a selection of random nodes going
backward in time. To describe the algorithm’s dynamics, we use the Susceptible-Infectious-Recovered (SIR)
model as an illustrative example. Under the SIR model, an infected node recovers after a time drawn from
an arbitrary distribution and, while infected, transmits the disease to its neighbors at a fixed rate. Given
an initial node v and an exploration budget k, the algorithm predicts v’s status (susceptible, infectious, or
recovered) at any time t ≥ 0. The process starts from v and explores at most k nodes locally. For this
purpose, the process determines node v’s recovery time, and then draws recovery, and contact times for each
adjacent node, allowing transmissions only if the respective contact time is earlier than the initiating node’s
recovery time. Then, the algorithm traverses transmission edges backward in a breadth-first manner until it
reaches k nodes or exhausts all edges. Next, v’s infection and recovery time can be computed using a directed
distance metric derived from contact times, determining v’s state over time for one instance of the process.
By averaging the outcomes of this algorithm with independent starting points, we construct an estimator for
the time evolution of epidemics. For details, see Section 2.1.

2) Theoretical Guarantees of the Estimator: We give exact bounds on the error of our estimators for
any given deterministic graph (Theorem 2.1). Leveraging this result and under the assumption of moderate
growth in local subgraph sizes (formalized by a tightness condition), we later prove that the required sample
size for an ε additive error is a constant independent of the network size (Theorem 4.3). Second, we extend
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our result to random network models, where we bound the error of our estimator under a condition ensuring
that empirical distributions of local neighborhood structures are consistently retained across different network
realizations (Theorem 2.3). Similar to our results on deterministic graphs, the sufficient sample size for the
estimator depends solely on the desired prediction accuracy, suggesting that the time evolution of epidemics
can be predicted by probing the local network structure of just a few individuals.

The latter result can be applied to various network models such as Erdös Rényi (Erdős et al., 1960),
configuration model (Bollobás, 1980), preferential attachment model (Yule, 1925; Barabási and Albert, 1999),
stochastic block model (Holland et al., 1983), and geometric random graphs (Gilbert, 1959). In the context
of our findings, we demonstrate that the epidemic’s time evolution concentrates around its mean, a property
previously established for a specific class of random graph models (Janson et al., 2014; Decreusefond et al.,
2012).

3) Asymptotic Characterization: We also study the asymptotics of epidemics on a sequence of graphs of
growing sizes. Leveraging the theory of local graph limits (Benjamini and Schramm, 2001; Aldous and Steele,
2004), we prove that the epidemic’s time evolution in a sequence of graphs with a local limit in probability
converges to the same process in the graph limit (Theorem 2.5). This implies that the time evolution of
epidemics is essentially a ‘local’ property of the graph.

4) Applicability to General Epidemic Models: Building on SIR models, our framework can be extended
to accommodate more complex epidemic models that include various intermediate states, particularly those
where an individual’s level of infectiousness changes over time as they transition through different phases.
Initially, a susceptible person might be infected but not contagious (i.e., exposed), then move through
stages with fluctuating transmission rates, potentially leading to a recovery state. Further, we can consider
settings in which the initial configuration is not uniform but is shaped by a probability measure influenced by
characteristics of their local neighborhood, such as degree. Our model also has the capacity to incorporate
interventions like vaccination or isolation strategies (see Section 2.3).

In the context of real-world applications, our framework encompasses several well-established epidemic
models, including those with heterogeneous infectiousness for HIV (May and Anderson, 1987; Isham, 1988),
malaria (Mandal et al., 2011; Gupta et al., 1994), models with carrier states for tuberculosis (Aparicio
et al., 2000; Blower et al., 1995) and typhoid (Cvjetanović et al., 1971), influenza (Andreasen et al., 1997),
COVID-19 (Bertsimas et al., 2021; Mukherjee and Seshadri, 2022), and even models of information cascade
(Watts, 2002) and viral marketing models (Bass, 1969; Jackson and Yariv, 2005; Banerjee et al., 2013; Bampo
et al., 2008; Ajorlou et al., 2018; Manshadi et al., 2020). A central theme behind these models is that they all
reach an eventual absorbing state, whether infectiousness or recovery. So it is possible to run the epidemic
process backward and apply our algorithm. The flexibility to capture this breadth of epidemiological models
and dynamics makes our framework broadly applicable.

5) Experimental Validation: We empirically validate our theoretical finding by conducting experiments
on synthetic and real-world networks, including the Copenhagen Interaction Network created by the Bluetooth
data of over 400 students (Sapiezynski et al., 2019) and San Francisco SafeGraph data with more than 30,000
nodes representing census blocks and points of interests across San Francisco (Chang et al., 2021). Notably,
the San Francisco SafeGraph dataset includes edge weights, representing the transmission strength between
nodes. In our experiments, we compare the outcomes of running an SIR epidemic on the entire graph against
our estimator’s results, which uses local network information of a few nodes. Remarkably, even with access to
less than 1% of the nodes in the San Francisco dataset and approximately 14% of nodes in the Copenhagen
dataset, our methodology yields predictions that align closely with the actual epidemic trajectories, falling
within the 95% confidence interval of the true time evolution (see details in Section 5).

1.2 Related Work
In the evolving landscape of epidemic prediction within operations research, a recent survey by (Gupta et al.,
2022) highlights the paramount need for refined modeling approaches and efficient data collection mechanisms.
Our research addresses this gap, focusing on the use of small samples of network data for more accurate
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epidemic predictions. To position our contributions, we delve into two main avenues of related research:
understanding epidemics with small data, and the asymptotic behavior of epidemics.

Prediction with small data: Harnessing the power of small data in epidemic modeling has gained
attention in the past few years. Recent work by Baek et al. (2021) studied sample complexity for estimating
diffusion models, including SIR, with limited data and unobservable networks. They derived lower bounds
on the number of required samples to estimate outbreak size. Notably, without network information, their
lower bounds increase with population size. This highlights the value of leveraging additional data layers,
particularly network structure as in our method, to reduce sample requirements.

Recognizing the pressing need for network data, several studies showcase its pivotal role in enhancing
predictions, especially regarding influence maximization. These studies typically lean on heuristics for probing
the network data (Mihara et al., 2015; Stein et al., 2017; Chen et al., 2022) or offer theoretical perspectives
tailored to specific random graph models (Wilder et al., 2018).

In this avenue, there are two closely related studies (Eckles et al., 2022; Alimohammadi et al., 2022).
Both investigate the use of minimal network data under the independent cascade model, a variant of the
SIR model where nodes transmit disease or information at a fixed probability p. The primary goal of
(Alimohammadi et al., 2022) is to approximate the epidemic’s final size, closely related to the size of the
largest component under percolation — a mathematical structure where each edge of the graph is retained
with a given probability p. They propose a local algorithm for this purpose. Their algorithm, bearing some
resemblance to ours without a temporal element, starts from a random node and outputs if it can infect
a constant number of other nodes. Under the assumption that the graph is an expander, they prove that
constant queries to this algorithm yield an (1− ϵ) approximation of the infection’s end size, drawing insights
from their earlier research (Alimohammadi et al., 2023) on expanders and percolation.

Contrasting with their work, our focus extends beyond the final infection size to include the epidemic’s time
evolution. Additionally, our scope encompasses diverse epidemic models, whereas theirs remains restricted to
SIR with constant recovery time. Furthermore, their result is limited to the more specific class of expander
graphs. This restriction stems from the fact that their model initiates epidemics from a single node. In
contrast, our approach assumes the epidemic begins from a small, fixed fraction of the entire population.

Turning our attention to the insightful work of Eckles et al. (2022), they focus on identifying optimal
seeds under the independent cascade model with a fixed seeding budget. They offer methods to approximate
the optimal seeding strategy while obtaining as minimal network information as possible. Their strategy is
twofold: First, using an oracle that reveals an infection’s ultimate spread from a chosen node, they show
that limited queries can achieve an error of ε relative to the optimal seeding solution. In the second scenario,
where observing edges is costly, they propose a probing algorithm that finds optimal seeds by querying a
constant fraction of the total edges. The common thread between our work and theirs is the aim to use
minimal network information for diffusion tasks. However, the specific goal of optimizing seeds is not within
the scope of our study.

Another different avenue in the relation of the epidemic on networks and limited data has focused on
inferring the global network structure from the limited observations of epidemic trajectories. For example,
Graham (2008); Goldsmith-Pinkham and Imbens (2013); Netrapalli and Sanghavi (2012) set out to reconstruct
networks, fitting parameters with observed data and operating on the assumption that the intrinsic network
draws from a stochastic block model (or what they call a linear-in-mean model). Further expanding on
this line of inquiry, Kim et al. (2014); Drakopoulos and Zheng (2017) adapted the approach to make use of
dynamic epidemic data. In our work, rather than learning network model parameters from existing data, we
are interested in data collection to make predictions about epidemics.

Asymptotic Analysis of Epidemics: Many studies have built rigorous foundation on concentration of
time evolution of epidemics under different random graph models, including Erdös-Rényi graphs (Budhiraja
et al., 2012; Coppini et al., 2020), configuration models (Janson et al., 2014; Decreusefond et al., 2012), and
their dynamic variants (Jacobsen et al., 2016; Ball and Britton, 2022). Additionally, insights on the duration
of epidemics have been illuminated by works like (Bhamidi et al., 2014; Lashari et al., 2021). For a more
comprehensive overview of mathematical models of epidemics, the book by (Kiss et al., 2017) serves as a
great resource. Many of these random network models meet the tightness and stable neighborhood conditions
required by our theorem, thus our concentration results in Theorem 2.3 are applicable to them.
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Most recently, the beautiful works of (Lacker et al., 2019; Ganguly and Ramanan, 2022) study a general
class of processes on locally convergent graphs, showing that given certain conditions, the empirical node
state distribution converges to the limit. The focus of (Lacker et al., 2019) is on diffusion processes, whereas
(Ganguly and Ramanan, 2022) brings jump processes into the fold — a class of diffusion processes that can
fit the SIR model. While they study a more general random process on graphs, the applicability of their
results is limited to a narrower set of graph structure, such as those with bounded maximum degrees or those
converging locally to a generalized branching process. In contrast, our convergence theorem (Theorem 2.5)
does not necessitate assumptions about bounds on the maximum degree or a specific structure in the limit.

2 Model and Main Results
To facilitate a clear presentation, we first present our main results for a classic Susceptible-Infected-Removed
(SIR) model where individuals can be susceptible, infected, or recovered. In this model, individuals are
represented as nodes in a graph, with edges representing potential transmissions. An infected node recovers
at a time drawn from an arbitrary recovery time distribution DR, and while infected, it transmits the disease
to its neighbors following a Poisson time process with a fixed rate (denoted by DI), after which the infected
node recovers. We consider a scenario where each node is independently infected initially with a probability
greater than zero, denoted as ρ > 0.

Our results extend beyond the classic SIR model. We prove our results on a general model of epidemics
with time-varying infectiousness and heterogeneous initial conditions in Section 2.3.

2.1 Local Estimator for SIR Model
We introduce a local algorithm that uses the information of a small number of individuals in the local
neighborhood of the node v to determine its state with respect to the epidemic at any time in the future
t ≥ 0. This is achieved by a backward simulation of the epidemic process.

Given a parameter k and an initial node v as input, the algorithm simulates the backward epidemic
process starting from v until it reaches at most k other nodes in the neighborhood of v. The output is a
vector (Sk,v(t), Ik,v(t), Rk,v(t))t≥0, where Sk,v(t), Ik,v(t), and Rk,v(t) are indicators showing whether node v
is susceptible, infectious or recovered at time t under the simulated process.

For a more precise illustration of the backward process, we begin by determining the recovery time for
node v. Subsequently, for each node u connected to v, we draw its recovery times ru from DR, and the contact
time c(u,v) between u and v from DI . A transmission along a directed edge (u,w) is feasible only when the
contact time is less than the recovery time of the starting endpoint of the edge, i.e., c(u,w) < ru; otherwise,
the edge gets discarded. The algorithm then performs a breadth-first search from node v, traversing edges
backward until it either reaches k nodes or runs out of edges. During this traversal, the algorithm consistently
computes recovery and transmission times for newly encountered nodes and edges.

Using the contact times as edge weight – and assigning ∞ where contact time exceeds recovery time– we
define a directed distance dist(T )(x, y) between two nodes x, y as the length of the shortest weighted path
from x to y. This distance conceptually represents the time it takes fornode x to infect y. Leveraging this
construction, the algorithm determines v’s infection time by finding the shortest path with respect to dist(T )

from the observed initially infected nodes to v. Here, we assumed the knowledge of each observed node’s
initial state. However, without this knowledge, the initial state is determined by infecting each node with
probability ρ. Furthermore, the recovery time of node v is obtained by adding rv to the infection time of v.
Finally, the algorithm outputs the state of node v across time. See the details in Algorithm 1 below.

We choose q independent uniform starting nodes v1, . . . , vq, and apply Algorithm 1 to them to estimate
the time evolution of the epidemic from these nodes. Assuming that initially each node is infected with
probability ρ, we define the estimator

Ŝ
(ρ)
q,k,n(t) =

∑q
i=1 Sk,vi(t)

q
(1)

as the fraction of susceptible nodes in the q starting nodes at time t. Similarly, define Î
(ρ)
q,k,n(t), R̂

(ρ)
q,k,n(t), as

the fractions of infectious and recovered nodes at time t.
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Algorithm 1: Local algorithm – the backward epidemic process
Input: Integer k > 0, root node v, initial infected nodes I0, and Gn.
Let O = {},W = {v} be the list of observed and waiting to be observed nodes, respectively.
while |O| ≤ k and W ̸= ∅ do

Let u be the next node in W .
for w ∈ N(u) do

Draw contact times for the edge c(u,w).
if rw = ∅ then

Draw recovery time rw from DR.
end
if rw > c(u,w) and w ̸∈ O then

Add w to W .
end

end
Remove u from W and add to O.

end
infv = dist(T )(O ∩ I0, v) (shortest path from O ∩ I0 to v using transmission edges).
recv = infv + rv.
Sk,v(t) = 1{t ≤ infv}, Ik,v(t) = 1{infv < t ≤ recv}, Rk,v(t) = 1{t > recv}.
Output: (Sk,v(t), Ik,v(t), Rk,v(t))t≥0

2.2 Efficacy of the Local Estimator

In the following sections, we rigorously examine the error of our local estimators, Ŝ(ρ)
q,k,n(t), Î

(ρ)
q,k,n(t), and

R̂
(ρ)
q,k,n(t) in predicting the time evolution of epidemics S

(ρ)
n (t), I(ρ)n (t), and R

(ρ)
n (t). We start by presenting

an exact bound for the accuracy of the estimator with a predetermined number of queries q and input size
k in finite deterministic graphs (see Section 2.2.1). In Section 2.2.2, we extend these insights to random
network models, and in Section 2.2.3 we extend our findings to sequences of growing graphs with similar
local structures, leveraging the theory of local graph limits.

2.2.1 Finite Deterministic Graph.

Given a fixed deterministic graph Gn, we define the vector E
(ρ)
n (t) = (S

(ρ)
n (t), I

(ρ)
n (t), R

(ρ)
n (t)) representing

the epidemic state at time t. Each of the components S
(ρ)
n (t), I

(ρ)
n (t) and R

(ρ)
n (t) are random variables

representing the proportion of susceptible, infectious, and recovered nodes in Gn, respectively. Similarly,
define Ê

(ρ)
q,k,n(t) = (Ŝ

(ρ)
q,k,n(t), Î

(ρ)
q,k,n(t), R̂

(ρ)
q,k,n(t)) as the estimator vector, obtained from running Algorithm 1

with input k and q independent starting points. We can directly bound the error of the estimator using the
following expression:

εr(Gn, k) =
1

n

∑
v∈V (Gn)

1{|Br(Gn, v)| > k},

where Br(Gn, v) is the subgraph of Gn containing all nodes at a graph distance of at most r from v. This
expression captures a tightness condition on the neighborhood sizes around uniform random nodes.

Theorem 2.1 (Local Estimator for a Finite Graph). Let Gn be a deterministic graph of size n. Consider an
SIR epidemic in which each node is initially infected with an independent probability of ρ > 0. Then for any
t ∈ [0,∞],

P
(
|E (ρ)

n (t)− E[E (ρ)
n (t)]| > δ

)
≤ 16

nδ2
+ min

r,k≥1

(k
n
+

16ε2r(Gn, k)

δ2
+

(1− ρ)r

δ

)
. (2)

Further, the error of the estimator is bounded, i.e., for any t ∈ [0,∞],

P
(
|Ê (ρ)

n,q,k(t)− E (ρ)
n (t)| > δ

)
≤ 32(k + 1)

δ2n
+ 2e−2qδ2 +

2

δ
min
r≥0

(
(1− ρ)r + (1 +

16

δ
)ε2r(Gn, k)

)
. (3)

In (2) and (3), the probability is over both the randomness of the algorithm and the epidemic process.
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Our theorem presents an upper bound on the estimator’s error. This bound consists of multiple terms,
reflecting the nuanced interplay between various parameters. A main component of our bound depends on
the interrelation between the radius r and and the fraction of nodes with r-neighborhood larger than k,
expressed as εr(Gn, k). We can bound this term in many scenarios. For example, consider the case that Gn

has maximum degree ∆. Then the r neighborhood of the node has at most ∆r nodes, so we can choose
r < log∆(k) small enough to deduce ε⌊log∆(k)⌋(Gn, k) = 0. As a result, an upper bound for the error in (3)
simplifies to a function of number of queries and input k, as 32(k+1)

δ2n + 2e−2qδ2 + 2
δ (1− ρ)log∆(k).

What happens if the graph does not have a maximum degree limit, meaning that the maximum degree
in Gn may grow quickly with n? Our theorem can still imply that with small k and q the error is small,
provided that the size of the local neighborhood of a uniform random node grows slowly. One can ensure
such behavior by implementing a constraint on bounding εr(Gn, k) for large enough constant k. We refer
to this specific constraint as tightness, elaborated in Definition 3.1. In Theorem 4.3, we prove that under
the tightness condition, and for any precision δ, there are constant q and k such that the estimator achieves
δ-additive error with probability at least 1− δ.

Remark 2.2 (Local estimator of the final size of the epidemic). Since the guarantees of the theorem are
independent of t, they also give guarantees for the final size of the infection. ◀

2.2.2 Finite Random Graphs

To determine the error margin of the estimator for random graphs, we begin by illustrating how our algorithm
accommodates random network models. Two approaches can be adopted without altering our results. One
option is to first draw a network realization from the desired model and then feed local samples to the
algorithm. Alternatively, the network can unfold locally on-the-fly around the input node during the backward
process rather than fixing the full network realization upfront. Both strategies yield the results we aim to
showcase.

To prove the accuracy of the estimator, we require a condition called Stable Neighborhood Structure (see
Definition 3.2). This condition ensures that distributions of local network structures are similar across random
instances. For example, a model that randomly generates either a complete graph or isolated nodes with
equal probability would not satisfy this condition, since the local structures differ drastically between those
cases. With this condition met, we demonstrate that for a specified precision δ > 0, there exist constants kδ
and qδ with respect to the network size to ensure an estimation error is at most δ:

Theorem 2.3 (Local Estimators for Random Graphs). Let (Gn)n∈N be a sequence of random graphs satisfying
tightness and stable neighborhood structures (Definitions 3.1 and 3.2). Then E

(ρ)
n (t) is concentrated,∣∣∣E (ρ)

n (t)− E[E (ρ)
n (t)]

∣∣∣ P−→ 0 as n → ∞.

Furthermore, given any δ > 0, there exists constants N, q, k such that for any n > N , and any t ≥ 0,

P
(
|Ê (ρ)

n,q,k(t)− E (ρ)
n (t)| > δ

)
≤ δ. (4)

Policy implications of this result arise in scenarios where social planners might lack access to the specifics
of the social interactions (even for the few local samples required by Theorem 2.1). Alternatively, the planner
may wish to model the interaction networks, perhaps under varying intervention policies, and implement
a rapid algorithm to predict how an epidemic might unfold. Our result shows that Algorithm 1 can be
implemented fast, since it needs to be run on a few nodes. This would enable planners to test and compare
different policies efficiently.

Remark 2.4 (Application to Random Graph Models). The stable local neighborhood and tightness as-
sumptions apply to most sparse random network models. In particular, we will show that both conditions
hold for graphs converging locally in probability (see Appendix C.3). Using this insight, we can apply
our results to configuration models (Dembo and Montanari, 2010), sparse inhomogeneous random graphs
(including stochastic block models) (Bollobás et al., 2007), preferential attachment models (Berger et al.,
2014; Garavaglia et al., 2022), random intersection graphs (Kurauskas, 2022; van der Hofstad et al., 2021),
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random graph models with communities (Trapman, 2007; Ball et al., 2010; van der Hofstad et al., 2015),
and spatial inhomogeneous random graphs (van der Hofstad et al., 2023). The latter includes hyperbolic
random graphs (Krioukov et al., 2010; Komjáthy and Lodewijks, 2020). For an in-depth exploration of various
network models and their corresponding limits, we recommend the book by van der Hofstad (2024). ◀

2.2.3 Sequence of Growing Graphs

We generalize our previous results using the theory of local graph limits (Benjamini and Schramm, 2001;
Aldous and Steele, 2004). Intuitively, a sequence of (possibly random) graphs Gn}n∈N is said to have a local
limit in probability if the empirical distributions of the neighborhoods of randomly sampled nodes converge in
probability. The limit is then a probability measure µ on the space G⋆ of rooted, locally finite graphs. We
will use (G, o) for a graph G with root o in G⋆. See Section 3.3 for the precise definitions. We prove that
epidemics exhibit well-defined limit behavior under local convergence. Further, the final size and the time
evolution of an epidemic in finite graphs converge to those on the limit graph.

Theorem 2.5 (Convergence of the Epidemic Processes). Let (Gn)n≥1 be a graph sequence that converges
locally in probability to (G, o) ∼ µ, where µ is a deterministic probability measure over G⋆. Then, there are
functions E (t) = (s(t), i(t), r(t)) such that, for any t ≥ 0 En(t)

P−→ E (t), and further, R(ρ)
n (∞)/n

P−→ r(∞).

One implication of this result is that epidemics are essentially a local property of the graphs. As a result,
it is possible to relate epidemic dynamics across networks with shared local structures but vastly differing
scales.

In Theorem 2.5, the functions s(t), i(t) and r(t) can be expressed in terms of the limit graph:

s(t) = µ(o ∈ S(ρ)(t)), i(t) = µ(o ∈ I(ρ)(t)), r(t) = µ(o ∈ R(ρ)(t)),

where (S(ρ)(t), I(ρ)(t),R(ρ)(t)) are the sets of susceptible, infected and recovered nodes for an epidemic on
(G, o) started from R(ρ)(0) = ∅, and every node is in I(ρ)(0) independently with probability ρ. Here, the final
size of the epidemic can be described by taking the time to infinity, R(ρ)

n (∞) = limt→∞ R(ρ)
n (t). Equivalently,

the final size of the epidemic can also be described as µ(o ∈ R(ρ)(∞)) = µ(C−(o)∩I(ρ)(0) ̸= ∅), where C−(o)
is the set of all nodes reached by the backward epidemic process started from o. As part of the proof of the
theorem, we show that the epidemic functions (s(t), i(t), r(t)) are well-defined on the limit graph.

Algorithmic insights in the limit: In our proofs, we will show that any sequence of locally convergent
graphs satisfies the tightness and stable neighborhood conditions (Definitions 3.1 and 3.2). As a consequence,
we can put the three theorems together to yield the local estimate of the epidemic on the limit graph
E (t) = (s(t), i(t), r(t)).

Theorem 2.6 (Local Estimation of the Limit). Assume (Gn)n∈N and the epidemic process satisfy the
conditions of Theorem 2.5. Then given δ > 0, there exists constants k q such that for any t ≥ 0

lim sup
n→∞

P
(
|Ê (ρ)

q,k,n(t)− E (t)| > δ
)
≤ δ. (5)

Similarly, at time t = ∞,
lim sup
n→∞

P
(
|R̂(ρ)

q,k,n(∞)− r(ρ)(∞)| > δ
)
≤ δ. (6)

2.3 Generalization to Other Models
The core results presented in this work, specifically the convergence of epidemic processes in Theorem 2.5,
generalize in several important ways. In this section, we explore the applicability of our results to various
epidemic models and starting configurations, providing a more comprehensive picture of the theorem’s reach.

2.3.1 General Epidemics

We introduce a generalized epidemic model with time-varying infectiousness that would apply to SI, SEIR, or
different variations of it, as well as, to intervention strategies such as vaccination and isolation strategies.
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Time-varying infectiousness: We explore a model where a node’s infectiousness varies over time,
accommodating stages like exposure or fluctuating infectiousness levels (see Figure 1). This model distinguishes
two timescales: 1) the epidemic timescale tracking disease progression network-wide, and 2) node-specific
timescales beginning at each node’s contraction from neighbors.

In this model, nodes are either susceptible or occupy a disease state from D = {D1, . . . ,Dm}. This set
describes the m sequential states a node v undergoes after contracting the disease, starting with D1 and
subsequently moving to D2, and so forth. Once a node in the disease state transmits the disease to its
susceptible neighbor, that neighbor enters the D1 state, marking the beginning of its node-specific timescale.

The progression between disease states partitions the node-specific timescale [0,∞] into m intervals
[t0, t1), [t1, t2), · · · [tm−1,∞], where the interval [ti−1, ti) corresponds to the state Di. The transition times
between disease states, t1 ≤ t2 ≤ . . . ≤ tm, are drawn from a distribution τv : {t1, t2, . . . , tm} → Rm

+ . For
example, Figure 1 shows a scenario where disease states are Exposed, Infectious, Quarantine, and Recovered.
The node-specific timescale is divided into 4 regions, one for each disease state. The figure also shows how a
node’s infectiousness varies over time, which we describe next.

The infectiousness of node v is determined by a probability density function βv : [0,∞] → R+. We draw
(τv, βv) from a joint probability distribution Pβ . This couples the duration of each disease state with its
corresponding infectiousness. Further, we assume that Pβ depends on the local network structure, i.e., there
exists an integer ℓ > 0 such that βv and τv are drawn from Pβ(Bℓ(G, v)).

Then, the epidemic progresses as follows. First, for each node v, draw βv and τv from Pβ(Bℓ(G, v)). Then,
for each neighbor of v, draw its transmission times independently from βv. Initially, each node is equally
likely to be in D1, and this initialization occurs with a probability ρ > 0. Incorporating Algorithm 1 into this
epidemic model is similar: draw βv and τv for each node v from Pβ , and then draw transmission times from
βv. This process yields a weighted directed graph, from which the backward edges for the next traversal can
be identified.

Next, we show that our main results apply to this general epidemic model. As before, we define En(t) as
the fraction of nodes in each state of the epidemic (susceptible and disease states D) at time t in a finite
graph Gn. Similarly, define E (t) for the epidemic state on the limit graph, and Êq,k,n(t) as the result of the
estimator with q queries and k as input.

Corollary 2.7 (Convergence of Epidemics with Time-varying Infectiousness). Let (Gn)n≥1 satisfy the
conditions of Theorem 2.5. Consider an epidemic model with time-varying infectiousness as above. Then the
epidemic concentrates for any t ≥ 0, En(t)

P−→ E (t). Further for any given δ > 0, there exists constants k, q
such that, for all t ∈ [0,∞]

lim sup
n→∞

P
(
|Êq,k,n(t)− E (t)| > δ

)
≤ δ. (7)

The time-varying infection model is a dynamic and adaptable framework that allows for the incorporation
of various epidemic models. As an exercise, the reader can verify how additional states, like an exposed
period, can be incorporated. More generally, this model allows interventions. In this context, we highlight
two applications: one that addresses vaccination and another that models social distancing.

Example 2.8 (Epidemics with Vaccination). Consider a scenario where specific nodes within a network
receive vaccinations based on a locally defined probability function, guaranteeing their immunity against
the disease. This scenario can be represented using the time-varying infectiousness epidemic model, where
D = {I,R, V } has three states of Infectious, Recovered, and Vaccinated. In this model, for vaccinated nodes,
Pβ allocates a βv with zero density probability and τv that defines the time of vaccination at t3 = 0 (as a
result, t1 = t2 = 0). For all other nodes, Pβ assigns an infectiousness density function as usual. ◀

Example 2.9 (Epidemics with Social Distancing). The model can also apply to scenarios where individuals
start practicing social distancing at a random time after becoming exposed to the disease. Hypothetically,
a person might get tested and then stay home to prevent further spread. In our model, the infectiousness
density, βv, along with τv can be tailored to capture both the moment of infection and the duration until the
adoption of social distancing measures. ◀

Remark 2.10 (Generalizations for finite graphs). While the results presented in this section primarily focus
on graph sequences with a local limit, it is worth noting that the findings extend to finite graphs, with similar
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conditions as in tightness and stable neighborhoods that it was discussed before in Section 2.2.1. The only
difference is that we need to add a notion of ‘marks’ (discussed in Section 3.4) to these conditions. We have
chosen not to delve into these cumbersome notational adjustments to keep the primary exposition clear. ◀

2.3.2 General Starting Configurations

In our main results so far, we assumed that each node is initially infected independently with a probability
ρ > 0. We can generalize our results to heterogeneous initial states, where a node’s initial state is drawn from
a probability distribution depending on its local neighborhood, for example, the node degree. As another
example, the initial state could be determined by the PageRank, which can be approximated by local network
structures (Garavaglia et al., 2020). To formalize this, we assume there exists a function Pℓ, where given a
node’s ℓ-neighborhood Bℓ(G, o) as input, Pℓ(Bℓ(G, o)) provides a probability distribution on the initial states
of the node o, whether S, I, or R.

We further need a second condition ensuring the presence of an initially infected individual within any
sufficiently long path originating from a uniformly random node; this is termed the ‘locally reachable property’.
To formalize this concept, let Pathr(Gn, v) be a uniform random path of length r among all such self-avoiding
paths starting from v in graph Gn. Then (Gn)n≥0 with the initial conditioned drawn from Pℓ is locally
reachable if for any δ > 0,

lim
r→∞

lim sup
n→∞

P
(
P
(
Pathr(Gn, v) ∩ I0 = ∅ | Gn

)
≥ δ

)
= 0, (8)

where the inner probability is over the uniform random node v, the randomness of the path, and the initial
state of infection I0. This property obviously holds for the case of independent initial infection with probability
ρ, since the chance that a path of length r does not encounter I0 is (1− ρ)r, which goes to 0 with r → ∞.
More generally, we have the following result:

Corollary 2.11 (General Starting Configuration). Let (Gn)n≥1 satisfy the conditions of Theorem 2.5.
Consider a SIR epidemic, where the starting infections are locally reachable (8), and that there exists some ℓ
such that the initial conditions are specified by a strictly local function Pℓ based on ℓ-neighborhoods as defined
above. Then the conclusions of Theorems 2.5 and 2.6 hold.

Here, we consider the initial states when we define the epidemic in the limit E (t) = (s(t), i(t), r(t)), i.e,
here,

s(t) = µΞ(o ∈ S(t)), i(t) = µΞ(o ∈ I(t)), r(t) = µΞ(o ∈ R(t)),

where we equipped the measure µ over rooted graphs G⋆ with first drawing the rooted graph (G, o) and then
the initial conditions Pℓ, and denoted it as µΞ. Also, similar to before, (S(ρ)(t), I(ρ)(t),R(ρ)(t)) are the sets of
susceptible, infected and recovered nodes for an epidemic on (G, o) started from an initial condition that is
drawn with respect to Pℓ. See details in Section 3.4.

Example 2.12 (Application to Viral Marketing). One of the practical applications of our results can be
seen in the realm of viral marketing. Consider a scenario where a company wishes to maximize the spread
of information about a new product. A common strategy in this context is to use a degree-based seeding
approach, targeting individuals with a high degree of connectivity within a social network to initiate the
spread of information. The subsequent question arises: How will information spread for a particular seeding
strategy? Historically, this question has been explored for specific random graph models (see, e.g., Manshadi
et al. (2020); Akbarpour et al. (2018)). By recognizing that degree-based targeting naturally satisfies the
strictly local assumption required for our model, the marketing platform can apply our local estimator to
predict how information will spread through the network by observing only the behavior of a few nodes. ◀

3 Preliminaries
In this section, we systematically establish a hierarchy of conditions on the local structure of graphs, each
serving as an extension of its predecessor.
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3.1 Graphs with Tight Neighborhood Sizes
The first condition is the notion of tightness, a property within a sequence of graphs that requires the number
of nodes within a specific radius of a uniformly selected node to be bounded. Recall that Br(G, o) represents
the subgraph of (G, o) comprising all nodes at a graph distance of at most r from o.

Definition 3.1 (Graphs with tight neighborhood sizes.). Let (Gn)n∈N be a sequence of graphs with
|V (Gn)| = n, and let εr(Gn, k) be the empirical probability that Br(Gn, v) contains more than k nodes when
v is chosen uniformly at random, i.e.,

εr(Gn, k) =
1

n

∑
v∈V (Gn)

1{|Br(Gn, v)| > k}. (9)

We say that the sequence of graphs has tight neighborhood sizes if for all r < ∞ and all δ > 0 there exists
k < ∞ such that for all n large enough εr(Gn, k) ≤ δ. If the graph Gn is itself random, then we say it has
tight neighborhood sizes if P(εr(Gn, k) ≤ δ) ≥ 1− δ. ◀

3.2 Graphs with Stable Neighborhood Structures
Moving forward, we expand our constraints to encompass graphs drawn from random distributions. We
introduce a condition called Stable Neighborhood Structure. This condition ensures that the empirical
distribution of local network structures is similar in different realizations of the random network.

To define this rigorously, we need to define the concept of a ‘rooted graph,’ which we will use in the following
sections as well. A rooted graph is a pair (G, o) where G = (V (G), E(G)) is a graph with nodes in V (G) and
edges in E(G), and o ∈ V (G) is a specific node. The graphs (G1, o1) and (G2, o2) are isomorphic, denoted
as (G1, o1) ≃ (G2, o2), if there exists a bijection ϕ : V (G1) 7→ V (G2) such that ϕ(o1) = o2 and u, v ∈ E(G1)
if and only if ϕ(u), ϕ(v) ∈ E(G2). Also, define P (Gn)

r (H⋆) = 1
|V (Gn)|

∑
v∈V (Gn)

1{Br(Gn, v) ≃ H⋆} as the
probability that the r-ball neighborhood of a uniform random node in Gn is isomorphic to H⋆. For random
graphs of size n, let p(n)

r (H⋆) = E
[
P (Gn)
r (H⋆)

]
represent the mean of this probability across all random

realizations of Gn on graphs of size n.

Definition 3.2 (Stable Neighborhood Structure). Let (Gn)n∈N be a sequence of (possibly random) graphs
with |V (Gn)| = n. We say that the sequence of graphs has a Stable Neighborhood Structure if for all r < ∞,
all δ > 0, and any rooted graph H⋆, as n → ∞,

P
(
|P (Gn)

r (H⋆)− p(n)

r (H⋆)| ≥ δ
)

P−→ 0. ◀

The stable neighborhood structure ensures that different random samples for similar-sized networks lead
to the same empirical distribution of local neighborhood structures. This condition allows for the statistics of
local neighborhood structures to change for different values of n. To analyze the asymptotics of graphs, a
stronger requirement is needed. Not only must we ensure consistent empirical distributions for networks of
similar size, but these distributions must also be asymptotically independent of the size of the graph n. This
additional constraint guides us to the next concept: local convergence in probability.

3.3 Local Convergence in Probability
The foundational framework of local weak convergence was initiated independently by Aldous and Steele
(2004) as well as by Benjamini and Schramm (2001). For a more comprehensive treatment, readers are
directed to Bordenave (2016) or (van der Hofstad, 2024, Chapter 2).

At a high level, a sequence of graphs (Gn)n∈N is said to exhibit local convergence if the empirical
distribution governing the neighborhoods of randomly chosen nodes approximates a certain limit distribution.
To define this rigorously, we must introduce a metric on the space of rooted graphs.

We denote the space of (potentially infinite) connected rooted graphs as G⋆, where two rooted graphs are
considered equivalent if they are isomorphic. Therefore, G⋆ consists of equivalence classes of rooted graphs
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modulo isomorphism. This space of rooted graphs, G⋆, can be endowed with a metric structure denoted as
dloc. The metric dloc between two rooted graphs (G1, o1) and (G2, o2) is defined as,

dloc((G1, o1), (G2, o2)) =
1

1 + infk{k : Bk(G1, o1) ̸≃ Bk(G2, o2)}
.

Note that this metric endows G⋆ with the natural σ-algebra of Borel sets, allowing us in particular to consider
measures µ on G⋆.

Definition 3.3 (Local convergence in probability). Let µ be a measure on G⋆. We define the concept of local
convergence in probability for a sequence of graphs (Gn)n≥1 to a limit (G, o) ∼ µ as follows: For every r ≥ 0
and H⋆ ∈ G⋆,

1

|V (Gn)|
∑

v∈V (Gn)

1{Br(Gn, v) ≃ H⋆} P−→ µ(Br(G, o) ≃ H⋆). (10)

This definition implies that the proportions of subgraphs in the random graph Gn converge in probability
towards those prescribed by µ. The above expression is equivalent to stating that p(Gn)

r (H⋆)
P−→ µ(Br(G, o) ≃

H⋆).
Other notions of local convergence, such as local weak convergence, where the focus shifts to the convergence

of expectations, and local almost sure convergence, which considers almost sure convergence, are related.
However, for our current purposes, local convergence in probability is the most convenient choice, particularly
due to its implication that the neighborhoods of two uniformly chosen nodes do not overlap; see (van der
Hofstad, 2024, Corollary 2.18) for further details.

3.4 Mark Local Convergence
In our framework, the notion of marks will play a pivotal role. These marks correspond to attributes associated
with the infection and recovery times of the epidemic, as well as the initial states of the nodes. We assume
the marks are defined on some measurable space Ξ.

We define graph marks M(G) = ((M(v))v∈V (G), (M(v, u))(u,v)∈E(G)) to annotate G with the marks asso-
ciated with both nodes and edges, where M(v),M(v, u) ∈ Ξ. Similarly, a marked rooted graph (G, o,M(G))
is a rooted graph (G, o) with the corresponding marks. Here, edges are considered as directed with (u, v)
showing the direction from u to v. This distinction is particularly relevant in our exploration of epidemics,
where the traversal time along a directed edge (v, u) may differ from that of (u, v).

Given a finite graph G, we represent the probability distribution on M(G) as PΞ(·|G). If (G, o) is a locally
finite graph with a root node o, the notation PΞ(·|(G, o)) is employed. Furthermore, µΞ is used to denote the
measure on marked graphs in G⋆. This is derived by initially selecting (G, o) ∼ µ and subsequently assigning
marks using the measure PΞ(·|(G, o)). Next, we will detail how Ξ and PΞ are defined in the context of SIR,
SIR with general starting configuration, and epidemics with time-varying infectiousness.

In the context of SIR epidemics, the mark space is denoted as Ξ = [0,∞]×{S, I,R}. The first component
of Ξ corresponds to the transmission time for edges and the recovery time for nodes. The second component,
which is relevant only to nodes, represents the initial state of the node. When defining the probability
distribution PΞ(·|(G, o)), the first component draws infection times for each edge from the distribution DI ,
and recovery time for each node from DR. For the second component of marks (which is independent of the
first component), each node has an initial state of I with probability ρ, and if not, it is marked as S.

For epidemics with a general starting point, the space of marks remains unchanged as Ξ = [0,∞]×{S, I,R}.
Also, the probability distribution PΞ on the first component corresponds to the time of transmission, and
recovery stays as before. The distinction arises in the second component, representing the epidemic’s initial
state. In this scenario, we use a function Pℓ that maps rooted graphs with a radius of at most ℓ to probability
distributions over the states {S, I,R}. Consequently, the second component of a node’s mark, M(o), is drawn
from Pℓ(Bℓ(G, o)). With this assumption, the mark of a node depends only on the ℓ-neighborhood of the
root, i.e., PΞ(M(o)|(G, o)) = PΞ(M(o)|Bℓ(G, o)).

In the context of epidemics with time-varying infectiousness, we refine the definition of marks associated
with nodes and the process of infection transmission from one node. Specifically, the node marks (M(v))v∈V (G)

now encompass not only the initial state of node – indicating whether it is in a disease state or susceptible– but
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also the density functions βv and τv. Let B be the space of pairs of density functions such as (βv, τv), where
βv : [0,∞] → R+ is a probability density of transmission time from v to its neighbors and τv : [t1, . . . , tm] → Rm

+

shows transition times between different disease states of the node. Then the marks on nodes take values in
B×{0, 1}, with the first component identifying (βv, τv) drawn from Pβ , and the second component indicating
whether the initial state is susceptible or disease. In addition, edge marks, represented as M(v, u), are drawn
independently from βv, indicating the transmission time from v to u. So, the space of marks for edges is R+.
As a result, the space of marks on the graph is the union of node marks and edge marks Ξ = B ×{0, 1} ∪R+.
Further, PΞ is defined by first drawing node marks and then edge marks as described above.

4 Proof Outline
In this section, we outline the main ideas of the proofs. We employ a second-moment argument for finite
graphs, demonstrating that truncating the epidemic at a constant radius approximates the epidemic on the
entire graph. Details for deterministic graphs can be found in Section 4.1 and for random graphs in Section 4.2.
We then incorporate local convergence in Section 4.3. Lastly, Section 4.4 addresses generalizations via marked
graph convergence.

4.1 Proofs for Finite Deterministic Graphs
We start by proving that running the epidemic within the r-ball of each node, rather than across the entire
graph, results in an outcome that concentrates around the true time evolution of epidemics. This idea is
equivalent to running Algorithm 1 for n queries with each node as a starting point, then selecting a sufficiently
large k to cover the r-ball of each node. Using a second-moment argument, we will bound both the mean and
variance of the truncation.

To formalize our approach, we introduce the notation T (r). This function maps a rooted marked graph
(G, o,M(G)) to the infection time of o under the assumption that the network is confined to Br(G, o).
Formally, T (r) assigns a non-negative number to a rooted marked graph (G, o,M(G)), which is equal to the
length of the shortest path from the set of initially infected nodes in Br(G, o) to the root o (with respect
to the weighted distance dist(T )(·, ·) defined in Section 2). When the graph is given in the context, we use
T (r)(o) as a short form of T (r)(G, o,M(G)).

Our goal is to approximate S(ρ)
n (t) by a sum of functions defined on balls of radius r, namely

S(ρ)

n,r(t) =
1

n

∑
v∈V (Gn)

1{t < T (r)(v)}. (11)

Similarly one can define I(ρ)
n,r(t), R(ρ)

n,r(t), and the vector E (ρ)
n,r(t) = (S(ρ)

n,r(t), I
(ρ)
n,r(t), R

(ρ)
n,r(t)). The following two

lemmas bound the first and second moment of this truncation:

Lemma 4.1 (Local Approximation - First Moment). For a given finite graph Gn,

EΞ

[
sup
t≥0

∣∣E (ρ)

n (t)− E (ρ)

n,r(t)
∣∣] ≤ (1− ρ)r,

where the expectation is with respect to the epidemic and the random set of initially infected nodes (or,
equivalently, the marks on Gn).

The proof is based on showing that the shortest path, in terms of dist(T ), from a node to the set of initially
infected nodes traverses only a limited number of graph nodes. This is because the initially infected nodes are
‘locally reachable’, and the likelihood of not encountering them reduces geometrically (see Appendix A.1).

Subsequently, we bound the variance of this approximation for the second moment. The main idea is
that the local epidemic processes (which define T (r)) for nodes separated by more than distance 2r are
independent. Consequently, we can constrain the variance by counting node pairs separated by over-distance
r. This quantity is denoted as

εr(Gn) =
1

n2
|{(x, y) ∈ V (Gn)× V (Gn) : distGn

(x, y) ≤ r}| ,
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where distGn(x, y) is the graph distance of x and y in Gn. The detail of the proof appears in Appendix A.2.
Later, we provide bounds on εr(Gn) based on εr(Gn, k), which was defined in the statement of Theorem 2.1.

Lemma 4.2 (Local Approximation - Second Moment). Let Gn be a deterministic graph with n nodes. Then

sup
t≥0

VarΞ(S
(ρ)

n,r(t)) ≤
1

n
+ ε2r(Gn),

where the variance is over the randomness of the epidemic process.

Note that the function S
(ρ)
n,r is effectively equivalent to the estimator Ŝ

(ρ)
n,r,n when making n queries with

an input of r to Algorithm 1. Further, Lemmas 4.1 and 4.2 provide the foundation for establishing the
concentrations of S(ρ)

n,r(t) and S
(ρ)
n (t). To conclude the proof of Theorem 2.1, the main step is to determine

the accuracy of q queries Ŝ
(ρ)
q,r,n to approximate S

(ρ)
n,r. For this purpose, first, we condition on the epidemic

process to bound the error of choosing q using standard concentration arguments. Then, to get the overall
accuracy of the estimator, we use the variance bound in Lemma 4.2 to control the estimator’s value across
different realizations of the epidemic process. See Appendix A.3.

Theorem 2.1 provides explicit bounds on the estimator’s error for a given graph. This bound can be made
as narrow as desired for graphs that meet the ‘tightness’ condition in Definition 3.1. The following theorem
formalizes this – even with a constant number of queries – the estimator closely match the true time evolution
of epidemics, (S(ρ)

n (t), I
(ρ)
n (t), R

(ρ)
n (t)), to any chosen precision:

Theorem 4.3 (Local Estimation of Tight Graphs). Let (Gn)n∈N be a sequence of graphs with tight neighbor-
hood sizes. Then

∣∣∣E (ρ)
n (t)− E[E (ρ)

n (t)]
∣∣∣ P−→ 0 as n → ∞. Furthermore, given any δ > 0, there exists constants

N, q, k such that for any n > N and t ≥ 0,

P
(
|Ê (ρ)

q,k,n(t)− E (ρ)
n (t)| > δ

)
≤ δ.

In Appendix A.5, we present an example emphasizing the importance of the tightness condition, illustrating
that in structures like the star graph, even the final infection size does not concentrate.

4.2 Proofs for Finite Random Graphs
The proof largely mirrors that of deterministic graphs, employing a similar second-moment argument. For the
first moment, Lemma 4.1 suffices as we can use linearity of expectation to get convergence of first-moment
with the randomness of Gn taken into account. However, for bounding the variance as in Lemma 4.2, we
must extend our result to accommodate the randomness of the neighborhood structure. Definition 3.2 ensures
minimal variance between the expected time evolution of epidemics across different network realizations as it
is highlighted in Lemma 4.4. See Appendix A.2. Then, the proof of the Theorem 2.3 follows the exact steps
of Theorem 2.1, which appears in Appendix B.

Lemma 4.4 (Local Approximation for Random Networks - Second Moment). Let (Gn)n≥1 be a sequence of
(possibly random) graphs with tight and stable neighborhood structures (see Definitions 3.1 and 3.2). Then for
any given δ > 0, and large enough n,

sup
t≥0

Var(S(ρ)

n,r(t)) ≤ δ,

where the variance is over the randomness of the epidemic process and the graph Gn.

4.3 Proofs for Growing Graphs
We establish the local convergence of the epidemic in three primary stages. First, as in Theorem 2.3, we
prove that an epidemic restricted to a constant radius ball around nodes (represented as En,r(t) in (11))
concentrates around the epidemic spanning the entire graph En(t). The second step is the local approximation
of the limit graph with a similar truncation. This approach mirrors the method used for the finite graph,
which we detail in Lemma 4.5. The final stage (Lemma 4.6) ensures the convergence of the truncated epidemic
in the finite graph to that of the limit graph.
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Starting with the local approximation of the epidemic in the limit, recall the definition of T (k)(o,G,M(G))

from Section 4.1. For the limit graph, define sk(t) = µΞ

(
1{t < T (k)(G, o,M(G))}

)
. Similarly, ik(t), and

rk(t) can be defined. Then we can extend Lemma 4.1 for the limit graph. The proof follows similar steps as
in the proof of Lemma 4.1 followed by monotone convergence.

Lemma 4.5 (Local Approximation of the Limit). For any (deterministic) measure µ on G ⋆, and any integers
k and k′,

µΞ

[
sup
t≥0

∣∣∣1{t < T (k)(G, o,M(G))} − 1{t < T (k′)(G, o,M(G))}
∣∣∣] ≤ (1− ρ)min{k,k′}.

Thus, s(t) = limk→∞ sk(t), i(t) = limk→∞ ik(t) and r(t) = limk→∞ rk(t) are well-defined, and

sup
t≥0

|(sk(t), ik(t), rk(t))− (s(t), i(t), r(t))| ≤ (1− ρ)k.

Next, we will show that S
(ρ)
n,r(t) is local, meaning that it converges to sr(t) uniformly in t. This step is

essential since S
(ρ)
n,r is not a continuous function of t with n discontinuities at the time of infection of each

node. The proof is based on conditioning on the structure of the graph in the local neighborhood and then
using the tightness of graphs with local limits to bound the probability.

Lemma 4.6 (Convergence of Local Approximation). Let (Gn)n≥1 be a graph sequence that converges
locally in probability to (G, o) ∼ µ, and let (Gn,M(Gn)) be the marked graph. Then for any t ∈ [0,∞],
EΞ[S

(ρ)
n,r(t)]

P−→ sr(t), where the convergence in probability is with respect to the randomness of Gn.

Now, to prove Theorem 2.5, first we can apply Lemmas 4.1 and 4.4 to prove that S
(ρ)
n,r(t) is a good

approximation of S
(ρ)
n (t). Then we can subsequently apply Lemma 4.6 and then Lemma 4.5 to prove

convergence of S(ρ)
n (t) to s(t) uniformly in t. Finally, Theorem 2.6 is an immediate corollary of Theorems 2.3

and 2.5, as convergent graphs satisfy both tightness and stable neighborhood conditions. The details appear
in Appendix C.

4.4 Generalizations
4.4.1 Proofs for General Epidemics

We start with Corollary 2.7, which follows very similar steps as in the proof of Theorems 2.5 and 2.6, with a
small subtlety. Before, it was enough to prove the concentrations for the number of susceptible nodes, and
that naturally led to concentration for recovered and, subsequently, infectious nodes. Now, we need to stretch
this idea a bit. We will show that the number of nodes in states S, or D1 through Di are concentrated. Then,
the proof works similarly to before; effectively, you can think of nodes in the union of these i+ 1 states as
a new susceptible state. Once we nail down the convergence for these combined states, the convergence of
nodes in a specific state like Di comes into focus by subtracting from these larger unions of two of these
unions. See the details in Appendix D.1.

4.4.2 Proofs for General Starting Configuration

Again, the main idea is to truncate the epidemic to a constant radius r and argue that this offers a good
approximation of the epidemic on the entire graph. As before, we can truncate the disease at a finite distance
r, and show it concentrates both at the limit and for finite graphs. The proof of concentration, as before, is
by a second-moment argument. We can generalize the first-moment Lemma 4.5 to the case that the initial
condition is locally reachable. Further, the bound on the second moment is a direct implication of Lemma 4.4,
since the truncated epidemic of two nodes that are at a large distance are still independent. The only caveat
is that we need to add the distance ℓ, which determines the radius that the starting configuration Pℓ depends
on. See Appendix D.2.
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5 Experiments
To empirically validate the asymptotic result derived in Theorems 2.3 and 4.3, we ran experiments using both
synthetic and real-world networks. The aim of our investigation is to assess the applicability and accuracy of
the proposed estimator (1) in predicting the time evolution and final infection size of epidemic outbreaks in
practice.

Synthetic Networks: We generated synthetic networks using two well-established models: Preferential
Attachment (Barabási and Albert, 1999) and Random Geometric Graphs (Gilbert, 1959). The Preferential
Attachment model represents the growth of scale-free networks, where new nodes join the network and
preferentially connect to existing nodes based on their degrees. In our experiments, we set the parameter
m = 3, indicating that each new node forms exactly three connections with existing nodes.

For Random Geometric Graphs, nodes are randomly distributed in a Euclidean space with their positions
defined by x and y axes drawn uniformly at random from [0,

√
n], where n denotes the size of the graph. The

connection radius for the Random Geometric Graph is set to 1.5, ensuring an average degree of approximately
7.06 as n → ∞. For both models, we created synthetic networks of varying sizes, ranging from 500 to 10, 000
nodes.

Copenhagen Interaction Network: To further validate the estimator’s effectiveness in a real-world
setting, we utilized a temporal network from the Copenhagen Networks Study (Sapiezynski et al., 2019). This
dataset recorded interactions among university students at 5-minute intervals over a four-week duration. The
interactions were based on Received Signal Strength Indicator (RSSI) values from Bluetooth signal strength
measurements, reflecting the physical proximity between individuals.

We focused on a specific 12-hour interval (from 8 am to 8 pm) on the fourth day of the study. Within
this timeframe, we considered only those connections that were within a distance of 6 feet or an equivalent
RSSI value of -74.25, ensuring that we concentrate on significant interactions representative of close proximity
encounters. The resulting graph has 422 nodes with an average degree of 7.89, reflecting a moderate level of
connectivity among the participants. The degree distribution of the network is illustrated in Figure 6.

SafeGraph San Francisco Network: To extend our investigation to a different real-world scenario, we
utilized the mobility dataset for San Francisco County. This data set is derived by (Chang et al., 2021) from
SafeGraph data and is structured as a bipartite network with time-varying edges. This bipartite network
has dynamic edges between Census Block Groups (CBG) — geographic units of 600 to 3,000 people — and
Points of Interest (POI). Edge weights represent the number of CBG visitors to a POI in a given hour.

To construct our edge-weighted network, we aggregated the mobility data for San Francisco County over
six hours on March 1, 2020, specifically from 6:00 am to 12:00 pm. This aggregation process resulted in a
comprehensive representation of the interactions between 28, 713 POIs and 2, 943 CBGs, yielding a total of
31, 656 nodes and 82, 022 weighted edges. See Figure 7 for weighted degree distribution. For our analysis, we
treated each POI and CBG as individual nodes without accounting for the population of CBGs. The edge
weights were used as the transmission rates between the nodes.

Experiment Details and Epidemic Parameters: In our experiments, the infection and recovery times
were drawn from exponential random variables with rates set to 1. The initial infection probability for a
node was set to 0.01. For the estimator (1), we used a total of 10 queries (q = 10) and varied the input
budget (k) in Algorithm 1, selecting values in the range of 2 to 9. A minor difference in the implementation
of Algorithm 1 from its description in the paper was introduced: once the backward process identifies k nodes
and if none are initially infected, we randomly select one node from these k nodes that are furthest (in terms
of graph distance) from the root to be initially infected 1 We repeated the experiment for 1, 000 times to
evaluate confidence intervals on the estimator’s accuracy.

1Introducing this modification led to faster convergence in practice. Because with the original algorithm, the likelihood of
encountering an initially infected node among a sample of, say, 5 nodes was not substantial, with probabilities calculated as
1− .95 ≈ .40. Although the proofs remain valid with this modification, we opted to retain the original algorithm description in
the paper for simplicity and to avoid discussing numerous variations.
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Performance Evaluation: To evaluate the estimator’s performance, we conducted 1,000 simulations for
each network and each choice of k. For comparison, we ran the SIR process with the same infection rate,
recovery rate, and initial infection probability over 1,000 iterations, using the Epidemic on Network package
in Python (Miller and Ting, 2020; Kiss et al., 2017). The average of these 1,000 runs was considered the
ground-truth time evolution. See Figures 2 to 5. Throughout our assessment, distinct scenarios unfolded.
For the Copenhagen dataset and the Preferential Attachment Model, an input budget of k = 6 for each
query sufficed. In the context of San Francisco and Geometric Random Graphs, a budget of k = 9 proved
optimal. Given the fixed number of queries set at 10, this equates to utilizing merely 60 nodes in the former
cases and 90 nodes in the latter instances. Remarkably, this translated to using only 0.28% of San Francisco,
14.9% of Copenhagen, 0.9% of Random Geometric Graphs, and 0.6% of Preferential Attachment nodes, yet
maintaining highly accurate predictions of epidemics.

Furthermore, to assess the similarity between the estimated time evolution and the ground-truth, we
computed the Euclidean distance and Pearson correlation of the estimated time series with the ground-truth
time series. The results are presented in Tables 1 to 4. We also considered how the size of the graph would
affect the estimator’s accuracy in Table 5.

6 Conclusion
In this research, we developed a novel approach to understanding the intricate dynamics of epidemics on
diverse network structures. Through the introduction of a local estimator and its robust theoretical guarantees,
our result shows the inherent ‘local’ nature of epidemic behaviors even in large networks. Notably, our
empirical results validate the precision of our estimator on various datasets.

Our results carry profound policy implications. As the world faces recurring epidemics, our findings
highlight the advantages of targeted data-gathering strategies. Rather than obtaining vast amounts of data
indiscriminately, policymakers and researchers may consider leaning on local network structures, ensuring
both efficiency in collection and enhanced predictive accuracy. Moreover, our algorithm can be used for fast
implementation of intervention strategies on networks, enabling the comparison of different mitigations. In
the past, many relied on mean-field models or specific random network models for this purpose (Birge et al.,
2022; Acemoglu et al., 2023).

In our work, we bring the theory of local convergence into the realm of operations research. Given the
vast expanse of problems governed by network dynamics, numerous applications stand to benefit from our
approach. The diffusion of misinformation (Mostagir and Siderius, 2023), the complexities of viral marketing
(Ho et al., 2002; Manshadi et al., 2020), pricing for accelerating diffusion (Kalish and Lilien, 1983; Shen
et al., 2011), network learning (Hu et al., 2019), and many other studies have traditionally been restricted by
assumptions about network models. However, our method offers a fresh lens, providing a deeper understanding
without necessitating network model assumptions.
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A Concentration of Epidemic - Proof Details

A.1 Local Approximation - Proof of Bounds on the First Moment
In this section, we delve into two closely related proofs, both of which focus on the concentration of the
first moment of a local approximation. These proofs leverage the inherent structure of our models and the
local reachability of nodes to shed light on the nuances of approximation within the confines of the given
parameters.

The first proof, corresponding to Lemma 4.1, shows how the path to an initial infection can be bounded
within a specific radius due to the fact that initially infected nodes are ‘locally reachable’. The second proof
(Lemma 4.5) builds upon the foundation set by the first. By concentrating on the characteristics of the
nodes and their infection times, we derive insights into the monotonic behaviors of our models and how they
converge in specific scenarios.

Proof of Lemma 4.1. The proof is a standard argument showing that the shortest path (in terms of dist(T ))
from a node to its initial infection can be constrained within a bounded radius due to the fact that the
initially infected nodes are ‘locally reachable.’

We first draw the marks corresponding to the contact and recovery times, and we only keep the initial
infection random. Recall the notations of T (r) which maps a rooted marked graphs (G, o,M(G)) to the
infection time of o under the assumption that the network is restricted to Br(G, o). Using this, T (∞)(v) refers
to the actual infection time of v in Gn. Note that the difference in Sn(t) and Sn,r(t) is in the set of nodes for
which T (∞)(v) ̸= T (r)(v), i.e.,

EΞ

[
sup
t≥0

∣∣E (ρ)

n (t)− E (ρ)

n,r(t)
∣∣] ≤ EΞ

[
1

n

∣∣∣{v : T (∞)(v) ̸= T (r)(v)}
∣∣∣] = PΞ

(
T (∞)(on) ̸= T (r)(on)

)
,

where on is a uniformly random chosen node from V (Gn). Consider the shortest path that identifies the
infection time T (∞)(v). If T (∞)(v) ̸= T (r)(v) then the graph length of this shortest path is at least r + 1,
otherwise the infection time was already identified in the r-neighborhood. Moreover, the initial r nodes of
this shortest path toward determining T (∞)(v) should not contain any initially infected node. If it did, the
path would reach another initially infected node faster. Therefore,

P
(
T (∞)(on) ̸= T (r)(on) | M(Gn)

)
≤ (1− ρ)r,

where the probability is with respect to the initial infections. Now, if we take the probability over the marks
of epidemic, we get that

PΞ

(
T (∞)(on) ̸= T (r)(on)

)
≤ (1− ρ)r,

which in turn provides an upper bound for EΞ

[
1
n

∣∣{v : T (∞)(v) ̸= T (r)(v)}
∣∣].

Proof of Lemma 4.5. The first part of the lemma follows from the same argument as in the proof of Lemma 4.1.
Then by noting that sk(t) is monotone decreasing in k, the limit s(t) = limk→∞ sk(t) is well-defined, and the
bound on their difference follows from the first part. Similarly, rk(t) is monotone increasing in k, and the
same argument holds. Finally, we can finish the argument by noting that ik(t) = 1− sk(t)− rk(t).
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A.2 Local Approximation - Proof of Bounds on the Second Moment
In this section, we delve into the second moment of our local approximation. The essence lies in understanding
the interplay between node distances and their implications for the variance of our local approximation.

Our first proof, Lemma 4.2, highlights the independence of events for nodes that are sufficiently far apart
in the graph, allowing us to derive a precise bound for the variance of S(ρ)

n,r(t).

Proof of Lemma 4.2. The proof follows from the fact that the events {t < T (r)(x)} and {t < T (r)(y)} are
independent if distGn(x, y) > 2r. Let Zv(t) = 1{t < T (r)(Gn, v,M(Gn))}. Then, we can write

n2Var(S(ρ)

n,r(t)) = E
[( ∑

v∈V (Gn)

Zv(t)−
∑

v∈V (Gn)

E(Zv(t)))
)2]

=
∑

v∈V (Gn)

E
[(
Zv(t)− E(Zv(t))

)2]
+

∑
distGn (v,u)≤2r

E
[(
Zv(t)− E(Zv(t))

)(
Zu(t)− E(Zu(t))

)]
+

∑
distGn (v,u)>2r

E
[(
Zv(t)− E(Zv(t))

)(
Zu(t)− E(Zu(t))

)]
=

∑
v∈V (Gn)

E
[(
Zv(t)− E(Zv(t))

)2]
+

∑
distGn (v,u)≤2r

E
[(
Zv(t)− E(Zv(t))

)(
Zu(t)− E(Zu(t))

)]
.

Here, we use the fact that if distGn
(u, v) ≥ 2r then Zu(t) and Zv(t) are independent. Therefore,

E
[(
Zv(t)− E(Zv(t))

)(
Zu(t)− E(Zu(t))

)]
= 0.

To finish the proof note that 0 ≤ Zv(t) ≤ 1, so an obvious upper bound is |Zv(t)− E(Zv(t))| ≤ 1. Therefore,

n2Var(S(ρ)

n,r(t)) ≤ n+ n2ε2r(Gn).

Note that all the bounds are independent of t, which finishes the proof.

Subsequently, we extend this analysis, factoring in the randomness of graph Gn. The following proof
emphasizes the stability of local neighborhoods and their role in shaping the variance.

Proof of Lemma 4.4. We first write

Var(S(ρ)

n,r(t)) = E(VarΞ(S(ρ)

n,r(t)|Gn)) + Var(EΞ(S
(ρ)

n,r(t)|Gn)).

The first term can be bounded using Lemma 4.2. For the second term, we use a standard argument we
condition over different graph structures of radius r that appear in the r-neighborhood of a uniform random
node. Let H be the set of all graph structures of Br(Gn, vi) for vi ∈ V (Gn) up to isomorphism. Also
for H⋆ ∈ H, recall that P (Gn)

r (H⋆) = 1
|V (Gn)|

∑
v∈V (Gn)

1{Br(Gn, v) ≃ H⋆} is the probability that the r-

neighborhood of a uniform random node in Gn is isomorphic to H⋆, and that p(n)r (H⋆) = E[P (Gn)
r (H⋆)] is its

expectation with respect to the randomness of Gn. Then

EΞ(S
(ρ)

n,r(t)|Gn) =
∑

H⋆∈H
P (Gn)
r (H⋆)PΞ(t < T (r)(H⋆)|H⋆). (12)

To bound the H, we use the tightness argument. Let Hk be a subset of H where each graph has a size of at
most k. Then

E(S(ρ)

n,r(t)|Gn) ≤ εr(Gn, k) +
∑

H⋆∈Hk

P (Gn)
r (H⋆)PΞ(t < T (r)(H⋆)|H⋆). (13)

Then using tightness, given any δ > 0 for large enough k and n, P(εr(Gn, k) ≥ δ) ≤ 1−δ. Therefore, we can as-
sume that Var(εr(Gn, k)) ≤ 2δ2. Also, using the fact that Sn,r(t) ≤ 1, we get Cov(εr(Gn, k),E(S(ρ)

n,r(t)|Gn)) ≤
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2δ. Therefore,

VarE(S(ρ)

n,r(t)|Gn) ≤ 2δ2 + 2δ + E
[( ∑

H⋆:|H⋆|≤k

PΞ(t < T (r)(H⋆)|H⋆)(P (Gn)
r (H⋆)− p(n)r (H⋆))

)2]
= 2δ2 + 2δ + E

[ ∑
H⋆:|H⋆|≤k

PΞ(t < T (r)(H⋆)|H⋆)(P (Gn)
r (H⋆)− p(n)r (H⋆))2

]
+ 2

∑
H⋆:|H⋆|≤k

∑
H⋆′ :|H⋆′ |≤k

(
PΞ(t < T (r)(H⋆)|H⋆)PΞ(t < T (r)(H⋆′

)|H⋆′
)

E
[
(P (Gn)

r (H⋆)− p(n)r (H⋆))(P (Gn)
r (H⋆′

)− p(n)r (H⋆′
))
])

≤ 2δ2 + 2δ + E
[∑

H⋆

(P (Gn)
r (H⋆)− p(n)r (H⋆))2

]
+ 2E

[ ∑
H⋆:|H⋆|≤k

∑
H⋆′ :|H⋆′ |≤k

|(P (Gn)
r (H⋆)− p(n)r (H⋆))(P (Gn)

r (H⋆′
)− p(n)r (H⋆′

))|
]
.

By our stable local neighborhood condition in Definition 3.2, we can bound the last inequality. Let Nr,k be
the number of rooted graphs of radius r and size k. For a given δ′ ≤ δ

Nr,k
, there exists N such that for all

n > N , and for all H⋆, E[(P (Gn)
r (H⋆)− p

(n)
r (H⋆))2] ≤ δ′. Therefore,

Var
(
E(S(ρ)

n,r(t)|Gn)
)
≤ 3δ + 4δ2. (14)

Putting this together with Lemma 4.2, we get

Var(S(ρ)

n,r(t)) ≤ 3δ + 4δ2 + E[ε2r(Gn))] +
1

n
.

Finally, the result follows by applying (16) along with the tightness condition to bound ε2r(Gn)).

A.3 Proof of Theorem 2.1 - Concentration of Epidemic for Deterministic Graphs
For simplicity, we state the proof for the number of susceptible nodes, but all the steps are replicable for
infectious and recovered nodes. The first step is to prove that S

(ρ)
n,r(t) concentrates around the time evolution

of epidemic S
(ρ)
n (t). In particular, the implications of Lemma 4.2 combined with the Chebyshev inequality

shows that for any δ′ > 0 and any t ∈ [0,∞],

PΞ

(
|S(ρ)

n,r(t)− EΞ[S
(ρ)
n,r(t)]| ≥ δ′

)
≤ 1

(δ′)2

( 1

n
+ ε2r(Gn)

)
.

Building upon this, by employing Lemma 4.1 and the Markov inequality, we can further deduce that for any
t ∈ [0,∞],

PΞ

(
|S(ρ)

n,r(t)− S(ρ)
n (t)| ≥ δ′

)
≤ (1− ρ)r

δ′
. (15)

Further, Lemma 4.1 also implies that

sup
t≥0

∣∣∣EΞ[S
(ρ)
n,r(t)]− EΞ[S

(ρ)
n (t)]

∣∣∣ ≤ EΞ

[
sup
t≥0

∣∣S(ρ)

n (t)− S(ρ)

n,r(t)
∣∣] ≤ (1− ρ)r.

Combining the previous three inequalities, we get that for any t ∈ [0,∞],

PΞ

(
|S(ρ)

n (t)− EΞ[S
(ρ)
n (t)]| ≥ 2δ′ + (1− ρ)r

)
≤ 1

(δ′)2

( 1

n
+ ε2r(Gn)

)
+

(1− ρ)r

δ′
.
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Now, to finish the proof of the first part, we need to relate the radius discovered by the algorithm to the
number of nodes visited. Let |Br(Gn, v)| be the number of nodes at distance at most r from v. Recall that
n2εr(Gn) is the number of pairs (u, v) such that distGn

(u, v) ≤ r. Then

n2εr(Gn) =
∑
v

|Br(Gn, v)|

=
∑

v:|Br(Gn,v)|≥k

|Br(Gn, v)|+
∑

v:|Br(Gn,v)|<k

|Br(Gn, v)|

≤ n2εr(Gn, k) + kn(1− εr(Gn, k)).

Here in the last inequality, we use the fact that there are nεr(Gn, k) nodes with |Br(Gn, v)| ≥ k. We use the
obvious bound of |Br(Gn, v)| ≤ n for those, and for the rest of the nodes, we use the bound of |Br(Gn, v)| ≤ k.
Therefore,

εr(Gn) ≤ εr(Gn, k) +
k

n
. (16)

Now it remains to bound the deviation of our estimator with q queries, Ŝ(ρ)
q,r,n(t), with S

(ρ)
n,r(t). We claim

that, for any t ∈ [0,∞],

PΞ

(
|S(ρ)

n,r(t)− Ŝ(ρ)
q,r,n(t)| ≥ δ

)
≤ 2e−2qδ2 +

16

δ2
( 1
n
+ ε2r(Gn)

)
(17)

Similar as before, define Zv(t) = 1{t < T (r)(Gn, v,M(Gn))}. Let u1, u2, . . . , uq be the set of initial nodes
sampled independently by the algorithm. Then

S(ρ)
n,r(t) =

1

n

∑
v∈V (Gn)

Zv(t), and Ŝ(ρ)
q,r,n(t) =

1

q

q∑
i=1

Zui
(t).

We couple the marks drawn in the algorithm with the marks of Gn determining S
(ρ)
n,r. Then

P(Zui
(t) = 1) = S(ρ)

n,r(t),

and the sampling of ui is with replacement. So, Zui
(t) are independent given M(Gn). Therefore, using

Hoeffding inequality, for t ∈ [0,∞]

P
(
|S(ρ)

n,r(t)− Ŝ(ρ)
q,r,n(t)| ≥ δ | M(Gn)

)
≤ 2e−2qδ2 , (18)

where the probability is only over the randomness of the starting points of the algorithm ui. Then, to conclude
(17), we can use the variance bound in Lemma 4.2 to decouple the marks of the epidemic with the algorithm.
To formalize this, we use the notation Ealg to show expectation over the randomness of the marks drawn by
the algorithm, and as before, we use EGn

for the randomness of Gn and its marks M(Gn). Also, with the
abuse of notation, we use Gn and alg as input of the local approximation S

(ρ)
n,r and the estimator Ŝ

(ρ)
q,r,n to

show the corresponding marks. Our goal is to prove the following lower bound,

PΞ,alg

(
|S(ρ)

n,r(t, Gn)− Ŝ(ρ)
q,r,n(t, alg)| ≤ δ

)
≥ 1− 2e−qδ2/2 − 16

δ2
(
1

n
+ ε2r(Gn)). (19)

For this purpose, define Et = |S(ρ)
n,r(t, Gn)− S

(ρ)
n,r(t, alg)| and Êt = |S(ρ)

n,r(t, alg)− Ŝ
(ρ)
q,r,n(t, alg)|. Then,

PΞ,alg

(
|S(ρ)

n,r(t, Gn)− Ŝ(ρ)
q,r,n(t, alg)| ≤ δ

)
≥

PΞ,alg

(
|S(ρ)

n,r(t, Gn)− Ŝ(ρ)
q,r,n(t, alg)| ≤ δ | Êt ≤ δ/2

)
Palg

(
Êt ≤ δ/2

)
≥

PΞ,alg

(
Et + Êt ≤ δ | Êt ≤ δ/2

)
Palg

(
Êt ≤ δ/2

)
,
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where the last bound is using the triangle inequality. As a result,

PΞ,alg

(
|S(ρ)

n,r(t, Gn)− Ŝ(ρ)
q,r,n(t, alg)| ≤ δ

)
≥ PΞ,alg

(
Et ≤ δ/2

)
Palg

(
Êt ≤ δ/2

)
.

Now, we can apply (18) to bound the coupling between the algorithm and the epidemic, given that the marks
are the same.

PΞ,alg

(
|S(ρ)

n,r(t, Gn)− Ŝ(ρ)
q,r,n(t, alg)| ≤ δ

)
≥

(
1− 2e−qδ2/2

)
PΞ,alg

(
Et ≤ δ/2

)
.

Then we use the variance bound in Lemma 4.2 for the second event:

PΞ,alg

(
|S(ρ)

n,r(t, Gn)− Ŝ(ρ)
q,r,n(t, alg)| ≤ δ

)
≥

(
1− 2e−qδ2/2

)(
1− 16

δ2
(
1

n
+ ε2r(Gn))

)
,

which proves (17). Combining this with (16), we get the desired result. □

A.4 Concentration of Epidemics for Tight Graphs – Proof of Theorem 4.3.
This is a direct application of Theorem 2.1 along with the definition of the tightness. □

A.5 Examples on Necessity of our Conditions
Two examples are discussed in this section, highlighting the nuanced impact of specific conditions on epidemic
estimations. The first illustrates a scenario where the graph does not satisfy the tightness condition and
shows how the time evolution of the epidemic does not concentrate in this case. The second example shows
where, with a strictly local starting condition, the final size of the epidemic does not concentrate around its
mean even if the underlying network is tight.

Example A.1 (Necessity of the tightness condition). The necessity of the condition in Definition 3.1 for local
estimation of epidemics becomes apparent when examining specific graph structures. Consider the star graph,
wherein a central node connects to n− 1 peripheral nodes. In this scenario, the final infection size and the
time evolution of the epidemic fail to concentrate. To see this, note that except for the ρ fraction of peripheral
nodes that are initially infected, the rest of them can only get infected through the central node. Due to
its high degree, the central node will, with a high probability, eventually become infected. Assuming the
recovery rate to be equal to the transmission rate, the number of nodes to which the central node transmits
the disease becomes a uniform random variable within the range of 0 to (1 − ρ)n. Consequently, without
observing the recovery time of the central node, estimating the final infection size or the time evolution
becomes infeasible. This example does not satisfy the tightness condition since |B2(Gn, v)| = n for every
node v. Definition 3.1 controls the influence of large-degree nodes and imposes a regularity on the system,
leading to more stable and predictable infection spread across the graph. ◀

Example A.2 (Strict locality is not enough for convergence of final size). Consider three distinct graphs,
each of size n, where the first is formed by blowing up each node of a 3-regular random graph with a triangle,
and the second and third are standard 3-regular random graphs. We add an edge between two random
nodes of the first and second graph and two random nodes of the second and third graph. Suppose an initial
condition is imposed such that nodes within a triangle are infected while others are susceptible. Under this
starting configuration, the first graph becomes entirely infected, while the second and third remain susceptible.
The evolution of the epidemic then depends on a single bridging node in the second graph, leading to three
potential outcomes for the final infection size: a rapid die-out in the second graph, a linear spread in the
second but not the first, or a linear spread in both. Consequently, the final size does not converge to a
deterministic value. ◀

B Proof of Theorem 2.3 - Concentration of Epidemic for Random
Graphs

The first part of the theorem on the concentration of the epidemic follows the exact same argument as in
the proof of Theorem 2.1. To see it, note that Lemma 4.4 is enough to give concentration of Sn,r(t). To
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deduce the concentration of Sn(t) from it, we note that Lemma 4.1 also applies to random graph models (by
conditioning on the drawn graph and using the law of total expectation). To deduce the bound on the local
estimator, we can follow the same steps, with the change of applying Lemma 4.4. □

C Convergence of Epidemics on Growing Graphs- Proof Details

C.1 Proof of Lemma 4.6 - Convergence of Local Approximation
The proof is similar to Lemma 4.4 in the sense that we condition on different structures the r ball of a
node can take. Recall equation (12), and that PΞ is the probability over the graph marks. Also, recall that
s
(ρ)
r (t) = µΞ

(
1{t < T (r)(G, o)}

)
. As before, we can write

s(ρ)

r (t) =
∑

H⋆∈H
pr(H

⋆)PΞ

(
t < T (r)(H⋆)

)
,

where pr(H
⋆) = µ(1{Br(G, o) ≃ H⋆}) is the probability that the r-neighborhood of the limit graph is

isomorphic to H⋆. Therefore, the left-hand side of the expression of Lemma 4.6 can be written as

sup
t≥0

∣∣EΞ[S
(ρ)

n,r(t)]− s(ρ)

r (t)
∣∣ = sup

t≥0

∣∣∣∣∣ ∑
H⋆∈H

PΞ

(
t < T (r)(H⋆)

)(
p(Gn)
r (H⋆)− pr(H

⋆)
)∣∣∣∣∣ . (20)

For the rest of the proof, we use tightness and stable local neighborhood criteria for graphs converging locally
in probability. These conditions are proved in Appendix C.2. Using the tightness condition, we can choose k
large enough such that P(εr,k(Gn) ≤ δ) ≥ 1− δ. So, as in Lemma 4.4, if we let Hk be the set of all locally
rooted graphs of size k, then we can approximate the right-hand side of (20) with the sum of H⋆ ∈ Hk. More
precisely, using the tightness condition, for any δ > 0, there exists a large enough k, such that

P
(∣∣∣ sup

t≥0

∣∣ ∑
H⋆∈H

PΞ

(
t < T (r)(H⋆)

)(
p(Gn)
r (H⋆)− pr(H

⋆)
)∣∣−

sup
t≥0

∣∣ ∑
H⋆∈Hk

PΞ

(
t < T (r)(H⋆)

)(
p(Gn)
r (H⋆)− pr(H

⋆)
)∣∣∣∣∣ ≤ δ

)
≥ 1− δ.

By applying this to (20), it is enough to prove the following,

sup
t≥0

∣∣ ∑
H⋆∈Hk

PΞ

(
t < T (r)(H⋆)

)(
p(Gn)
r (H⋆)− pr(H

⋆)
)∣∣ P−→ 0

For this purpose, we use the following,

sup
t≥0

∣∣∣∣∣ ∑
H⋆∈Hk

PΞ

(
t < T (r)(H⋆)

)(
p(Gn)
r (H⋆)− pr(H

⋆)
)∣∣∣∣∣ ≤ ∑

H⋆∈Hk

∣∣∣p(Gn)
r (H⋆)− pr(H

⋆)
∣∣∣.

So it remains to provide bound on the right-hand side. This is possible by first observing that |Hk| is a
bounded number since there are finitely many graphs of size k. Second, for each H⋆, we can use that∣∣∣p(Gn)

r (H⋆)− pr(H
⋆)
∣∣∣ ≤ ∣∣∣p(Gn)

r (H⋆)− p(n)r (H⋆)
∣∣∣+ ∣∣∣p(n)r (H⋆)− pr(H

⋆)
∣∣∣.

The first term goes to zero by stable local neighborhood as proved in Appendix C.3. The second term,∣∣∣p(n)r (H⋆)− pr(H
⋆)
∣∣∣ P−→ 0 by local convergence in probability (van der Hofstad, 2024, Theorem 2.15 (b)). So,

the lemma is proved. □
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C.2 Proof of Theorem 2.5 - Convergence of Epidemic
First note that by applying Lemmas 4.1 and 4.4 we get that for any δ > 0, and any r and n large enough,
and any t ∈ [0,∞],

P
(
|En(t)− EΞ[En,r(t)]| ≥ δ

)
≤ δ.

Then we can subsequently apply Lemma 4.6 and then Lemma 4.5 to prove convergence of Sn(t) to s(t)
uniformly in t. The proof is similar for infectious and recovered nodes. □

C.3 Proof of Theorem 2.6 - Local Approximation of the Limit
The tightness condition follows since the distance of two uniform random nodes increases in convergent
graphs. More formally, given a sequence of graphs converging in distribution to a limit, and for any given r,
limn→∞ εr(Gn) = 0, as demonstrated in (van der Hofstad, 2024, Corollary 2.20).

Also, the stable neighborhood condition Definition 3.2 is satisfied by the criterion of local convergence
obtained in (van der Hofstad, 2024, Theorem 2.15 (b)). To formalize this, note that (van der Hofstad, 2024,
Theorem 2.15- part b) implies that for any finite rooted graph H⋆, and all integers r,

P (Gn)
r (H⋆)

P→ µ(Br(G, o) ≃ H⋆).

As a result,
p(n)r (H⋆) = E

[
P (Gn)
r (H⋆)

]
→µ(Br(G, o) ≃ H⋆).

Therefore, using a triangle inequality, we get that for any given graph H and integer r ≥ 1,

P
(
|P (Gn)

r (H⋆)− p(n)r (H⋆)| ≥ δ
)
≤ P

(
|P (Gn)

r (H⋆)− µ(Br(G, o) ≃ H⋆)|+ |µ(Br(G, o) ≃ H⋆)− p(n)r (H⋆)| ≥ δ
)
,

where the right side approaches zero when considering the preceding convergences. Therefore, convergent
graphs in probability satisfy the stable local neighborhood condition. As a result, we can apply Theorem 2.3,
establishing that for given any δ > 0, there exists constants N, qδ, kδ such that for any n > N ,

P
(
|Ê (ρ)

n,qδ,kδ
(t)− E (ρ)

n (t)| > δ
)
≤ δ. (21)

To finish the proof, it is enough to apply Theorem 2.5, which implies the convergence in probability of E
(ρ)
n (t)

to (s(t), i(t), r(t)). □

D Proof Details for General Epidemics

D.1 Convergence of General Epidemics – Proof of Corollary 2.7
We follow the proof of Theorem 2.5 step by step and point out what parts of the proofs need to be changed
for the general epidemics. After establishing the conclusion of Theorem 2.5, the proof of Theorem 2.6 directly
applies in this case.

Recall that the time-varying infectiousness of each node (βv, τv) depends on the ℓ neighborhood of the
graph. We start by proving the convergence of the number of susceptible people conditioned on the ℓ
neighborhood. As before, we can prove concentration bounds for the number of susceptible nodes and that
the truncated epidemics at some r neighborhood give the right bounds.

Our goal is to prove that for any δ > 0 and any t ∈ [0,∞],

lim
r→∞

lim
n→∞

P(
∣∣S(ρ)

n (t)− S(ρ)

n,r(t)
∣∣ ≥ δ) = 0. (22)

As before, we can define T (r)(v) as the time it takes for node v to leave a susceptible state if the epidemic
is confined to its r neighborhood. Then, the exact same argument as in the proof of Lemma 4.1, for a uniform
random vertex on ∈ V (Gn),

PΞ

(
T (∞)(on) ̸= T (r)(on)

)
≤ (1− ρ)r,
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which implies that

EΞ

[
sup
t≥0

|Sn(t)− Sn,r(t)|
]
≤ (1− ρ)r.

A similar first-moment bound works for the number of susceptible in the limit.
Now, we can bound Var

(
Sn,r(t)

)
as in Lemma 4.4. Note that the bounds we used in the second-moment

arguments in the proof of Lemma 4.4 were independent of the specifics of the dynamics of the epidemic, and
we only used the fact that T (r)(v) and T (r)(u) of two nodes with distGn

(u, v) > 2r are independent. Here,
this is true if distGn

(u, v) > 2r+ ℓ, where ℓ is added to ensure the transmission probability densities within all
nodes of Br(Gn, u) and Br(Gn, v) are independent. The two variance and first-moment bounds prove (22).

Next, by applying the proof steps of Lemma 4.6, we get convergence of EΞ[Sn,r(t)] to sr(t), i.e,∣∣EΞ[S
(ρ)
n,r(t)]− sr(t)

∣∣ P−→ 0, where the randomness is with respect to Gn. Combining this with the first
and second moment results on S(ρ)

n,r(t), we get the following convergences for any t ∈ [0,∞],

S(ρ)

n (t)
P−→ s(t).

We now extend our previous proof to calculate the proportion of nodes that reside in state S or any of
the states D1, . . . ,Di. Let us define D(i) = {S,D1, . . . ,Di} as the combined set of states encompassing S

and D1, . . . ,Di. The term D
(i)
n (t) represents the proportion of nodes found in any state within D(i) at a

given time t in Gn. Analogously, we define D(i)(t) with respect to the limit graph (G, o) ∼ µ. Furthermore,
as we previously outlined, T (r)

i (v,G,M(G)) as the time v exits state Di and enters Di+1, given that the
epidemic is truncated at the r-neighborhood. This is fundamentally equivalent to the shortest route from v
to the initial infection state plus the sum t1 + t2 + . . .+ ti specific to node v (keeping in mind that tj denotes
the transition period from Dj to Dj+1 as determined by βv). Crucially, considering the given marks, the
sole scenario where T

(r)
1 (v,G,M(G)) differs from T

(∞)
1 (v,G,M(G)) is if the shortest route to the initially

infected node exceeds a length of r. Otherwise, the contraction time of the disease and t1, t2, . . . , tr would
have already been discerned based on the local neighborhood. Consequently, our preceding proof remains
valid in this context: both the variance bound on 1{t < T

(r)
1 } and the convergence to the limit applies to

D(i)(t). As a result, D(i)
n (t)

P−→ D(i)(t).
Then the conclusion follows by noting that the number of nodes that in states Di, can be obtained by the

following subtraction D
(i)
n (t)−D

(i−1)
n (t).

D.2 Proof of Corollary 2.11
Our goal is to prove the convergence of the epidemics with a generalized starting configuration. We show how
Lemmas 4.1 and 4.5 can be extended to this case. As before, note that Sn(t)− Sn,r(t) only includes nodes
that T (∞)(on) ̸= T (r)(on). For such nodes, there exists a path of length at least r + 1 from v to an initially
infected node.

EΞ[sup
t≥0

|En(t)− En,r(t)|] = PΞ

(
T (∞)(on) ̸= T (r)(on) | M(Gn)

)
,

where the randomness on the right-hand side is over uniform random node on and the infection marks on the
initial graph. The right-hand side is essentially the case that a path of length r starting from on does not
reach I0. With the local reachability condition in hand, the right-hand side tends to 0 as we increase n and
then r.

The second subtle difference in the proof of Theorem 2.6 is that in the variance bound in Lemma 4.4, we
have used the fact that T (r)(u) and T (r)(v) are independent if u and v have distance larger than 2r. With
the generalized starting configuration, the independence still holds if u and v have a distance larger than
2r + ℓ. Recall that ℓ is the neighborhood size that initial conditions depend on (through the function Pℓ).
The rest of the proof follows as those of Theorems 2.5 and 2.6 as in other parts of the proof, we do not use
the starting configuration.
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Table 1: Performance evaluation of the estimator on Copenhagen Dataset. Values in parentheses represent
confidence intervals (CI).

Num. of
Tests per
Query

Absolute Error of
Ground Truth vs.
Estimated Relative

Final Sizea (CI)

Euclidean Distance of
Ground Truth vs.
Estimated Time
Evolutionb (CI)

Pearson Correlation of
Ground Truth vs.
Estimated Time
Evolution (CI)

2 0.091 (0.078, 0.104) 0.011 (0.010, 0.012) 0.942 (0.932, 0.952)
3 0.084 (0.071, 0.097) 0.010 (0.010, 0.011) 0.945 (0.937, 0.953)
4 0.086 (0.073, 0.100) 0.010 (0.010, 0.011) 0.952 (0.944, 0.959)
5 0.095 (0.079, 0.111) 0.010 (0.009, 0.010) 0.955 (0.947, 0.962)
6 0.089 (0.074, 0.104) 0.010 (0.010, 0.011) 0.959 (0.953, 0.965)
7 0.106 (0.091, 0.121) 0.010 (0.010, 0.011) 0.959 (0.953, 0.966)
8 0.087 (0.074, 0.099) 0.010 (0.009, 0.011) 0.964 (0.959, 0.969)
9 0.084 (0.071, 0.097) 0.010 (0.009, 0.010) 0.965 (0.959, 0.970)

a Defined as |Rn(∞)− R̂q,k,n(∞)|; the value lies in the range [0, 1].
b Defined by the equation limT→∞

1
T

∫ T

0
∥En(t)− Ên,q,k(t)∥1; the value lies in the range [0, 1].

Table 2: Performance evaluation of the estimator on San Francisco Dataset. Values in parentheses represent
confidence intervals (CI).

Num. of
Tests per
Query

Absolute Error of
Ground Truth vs.
Estimated Relative

Final Size (CI)

Euclidean Distance of
Ground Truth vs.
Estimated Time
Evolution (CI)

Pearson Correlation of
Ground Truth vs.
Estimated Time
Evolution (CI)

2 0.103 (0.086, 0.120) 0.058 (0.053, 0.063) 0.595 (0.531, 0.659)
3 0.091 (0.078, 0.105) 0.056 (0.052, 0.060) 0.560 (0.494, 0.625)
4 0.117 (0.099, 0.134) 0.058 (0.053, 0.063) 0.652 (0.598, 0.707)
5 0.107 (0.092, 0.122) 0.060 (0.056, 0.064) 0.542 (0.476, 0.607)
6 0.114 (0.100, 0.127) 0.059 (0.054, 0.065) 0.538 (0.467, 0.610)
7 0.115 (0.098, 0.131) 0.061 (0.056, 0.065) 0.554 (0.494, 0.615)
8 0.105 (0.091, 0.118) 0.062 (0.056, 0.067) 0.510 (0.437, 0.582)
9 0.098 (0.085, 0.111) 0.057 (0.054, 0.061) 0.582 (0.509, 0.654)

Table 3: Performance evaluation of the estimator on Preferential Attachment with 500 nodes. Values in
parentheses represent confidence intervals (CI).

Num. of
Tests per
Query

Absolute Error of
Ground Truth vs.
Estimated Relative

Final Size (CI)

Euclidean Distance of
Ground Truth vs.
Estimated Time
Evolution (CI)

Pearson Correlation of
Ground Truth vs.
Estimated Time
Evolution (CI)

2 0.070 (0.059,0.079) 0.013 (0.013, 0.014) 0.690 (0.657, 0.723)
3 0.063 (0.050,0.074) 0.012 (0.011, 0.013) 0.718 (0.679, 0.757)
4 0.079 (0.065,0.092) 0.012 (0.011, 0.013) 0.718 (0.680, 0.757)
5 0.079 (0.066,0.091) 0.011 (0.011, 0.012) 0.759 (0.720, 0.799)
6 0.073 (0.062,0.083) 0.011 (0.010, 0.012) 0.758 (0.718, 0.797)
7 0.072 (0.061,0.081) 0.011 (0.010, 0.011) 0.776 (0.742, 0.810)
8 0.066 (0.056,0.075) 0.011 (0.011, 0.012) 0.759 (0.729, 0.789)
9 0.067 (0.057,0.074) 0.010 (0.010, 0.011) 0.791 (0.763, 0.818)
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Table 4: Performance evaluation of the estimator on Random Geometric Graph with 500 nodes. Values in
parentheses represent confidence intervals (CI).

Num. of
Tests per
Query

Absolute Error of
Ground Truth vs.
Estimated Relative

Final Size (CI)

Euclidean Distance of
Ground Truth vs.
Estimated Time
Evolution (CI)

Pearson Correlation of
Ground Truth vs.
Estimated Time
Evolution (CI)

2 0.080 (0.070, 0.089) 0.063 (0.052, 0.073) 0.855 (0.835, 0.876)
3 0.100 (0.084, 0.11) 0.090 (0.078, 0.102) 0.836 (0.809, 0.864)
4 0.075 (0.063, 0.085) 0.068 (0.058, 0.077) 0.851 (0.830, 0.871)
5 0.075 (0.064, 0.085) 0.077 (0.066, 0.088) 0.864 (0.844, 0.884)
6 0.074 (0.063, 0.084) 0.083 (0.071, 0.095) 0.839 (0.812, 0.865)
7 0.089 (0.078, 0.100) 0.066 (0.056, 0.076) 0.844 (0.820, 0.868)
8 0.076 (0.063, 0.082) 0.074 (0.063, 0.086) 0.863 (0.845, 0.881)
9 0.084 (0.074, 0.092) 0.071 (0.059, 0.084) 0.878 (0.862, 0.894)

Table 5: Absolute error of estimator of the final size of the epidemic the for growing graph size (n). The
number of queries is 10, and the testing budget per query is k = 4. Confidence intervals are obtained with
1000 simulations.

Graph Size (n) Preferential Attachment
Euclidean Distance (CI)

Random Geometric Graph
Euclidean Distance (CI)

500 0.079 (0.066, 0.091) 0.075 (0.064, 0.085)
1000 0.076 (0.064, 0.088) 0.072 (0.061, 0.083)
2000 0.076 (0.063, 0.090) 0.071 (0.061, 0.082)
5000 0.074 (0.064, 0.085) 0.067 (0.059, 0.075)
10000 0.068 (0.058, 0.077) 0.066 (0.058, 0.074)
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An Example of Time-Varying Infectiousness

Figure 1: The density of infectiousness over time, illustrating the intervals of exposure, infectiousness,
quarantine with reduced transmission rate, and recovery.
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Figure 2: Copenhagen Dataset: Time Evolution of Epidemic Infections (I) and Recoveries (R)
with Estimator Evolution for Various Testing Budgets (k)

Figure 3: San Francisco Dataset: Time Evolution of Epidemic Infections (I) and Recoveries (R)
with Estimator Evolution for Various Testing Budgets (k)
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Figure 4: Random Geometric Graph: Time Evolution of Epidemic Infections (I) and Recoveries
(R) with Estimator Evolution for Various Testing Budgets (k)

Figure 5: Preferential Attachment: Time Evolution of Epidemic Infections (I) and Recoveries (R)
with Estimator Evolution for Various Testing Budgets (k)
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Figure 6: Degree Distribution of Copenhagen
Network. Figure 7: Degree Distribution of San Francisco

Mobility Network (Capped at 100 for Depiction).
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