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Abstract

Mallows model is a widely-used probabilistic framework for learning from rank-
ing data, with applications ranging from recommendation systems and voting to
aligning language models with human preferences [9, 22, 36]. Under this model,
observed rankings are noisy perturbations of a central ranking σ, with likelihood
decaying exponentially in distance from σ, i.e, P(π) ∝ exp

(
−β · d(π, σ)

)
, where

β > 0 controls dispersion and d is a distance function.
Existing methods mainly focus on fixed distances (such as Kendall’s τ distance),
with no principled approach to learning the distance metric directly from data. In
practice, however, rankings naturally vary by context; for instance, in some sports
we regularly see long-range swaps (a low-rank team beating a high-rank one),
while in others such events are rare. Motivated by this, we propose a generalization
of Mallows model that learns the distance metric directly from data. Specifically,
we focus on Lα distances: dα(π, σ) :=

∑
i=1 |π(i)− σ(i)|α.

For any α ≥ 1 and β > 0, we develop a Fully Polynomial-Time Approximation
Scheme (FPTAS) to efficiently generate samples that are ϵ- close (in total variation
distance) to the true distribution. Even in the special cases of L1 and L2, this
generalizes prior results that required vanishing dispersion (β → 0). Using this
sampling algorithm, we propose an efficient Maximum Likelihood Estimation
(MLE) algorithm that jointly estimates the central ranking, the dispersion parameter,
and the optimal distance metric. We prove strong consistency results for our
estimators, and we validate our approach empirically using datasets from sports
rankings.

1 Introduction

Ranking tasks arise in many applications, from online recommendation systems, sports competitions,
and voting, to more recently, the alignment of Large Language Models (LLMs) with human prefer-
ences [9, 22, 36]. A fundamental challenge is common to all these scenarios: given multiple observed
rankings, how do we aggregate them into a single central ranking, learn how rankings vary around
this center, and generate new rankings reflecting observed patterns?

Probabilistic models offer natural tools to address these questions. Among them, the Mallows
model[29] stands out due to its conceptual simplicity and interpretability. Under this model, observed
rankings are viewed as noisy perturbations of a central permutation1 σ, with their likelihood decaying
exponentially according to a chosen distance function d:

P(π) :=
exp
(
−β d(π, σ)

)
Z

,

1Throughout this paper, we use the terms ranking and permutation interchangeably.



where β > 0 controls the dispersion around σ, and Z is the normalizing constant (often referred to as
the partition function). Due to its interpretability and desirable structural properties, Mallows model
has found widespread adoption in recommendation systems, voting predictions, retail assortment
optimization, and, more recently, post-training of large language models [9, 10, 11, 23].

Initially, Mallows [29] proposed this model specifically with Kendall’s tau distance, and it was
subsequently generalized by Diaconis [12] to any right-invariant distance metric. In this paper, we
focus on the Lα Mallows model, defined by the family of Lα distances: dα(π, σ) :=

∑n
i=1 |π(i)−

σ(i)|α. Intuitively, the parameter α controls the penalty for long-range swaps (e.g., changes from
rank 1 to rank 100) versus local swaps, with larger values of α penalizing long-range swaps more
strongly.

Our contributions focus on two complementary aspects:
Parameter Estimation. We present an efficient Maximum Likelihood Estimation (MLE) algorithm
that jointly estimates the central ranking σ, the dispersion parameter β, and the distance parameter
α. Unlike previous studies on the Mallows model –which assume a fixed distance metric– our
estimator learns the distance metric jointly with other model parameters, marking the first such result
in the literature. Further, we prove strong consistency of our estimators under general conditions
α > 0, β > 0 (see Theorem 2.4).
Efficient Sampling. We develop a Fully Polynomial-Time Approximation Scheme (FPTAS) for
sampling permutations within ϵ-total variation distance of the true Lα-Mallows distribution, valid for
any α ≥ 1 and β > 0 (Theorem 3.1). Our result generalizes previous sampling methods limited to
special cases (L1, L2) that required vanishing dispersion (β → 0) [50, 32].

We validate our algorithms empirically using sports ranking datasets from American college football
and basketball (Section 4, codebase [2]). Our results reveal substantial differences between these two
sports: basketball rankings yield a larger α ≈ 1.09, reflecting a rapid decay in the probability of large
inversions (e.g., low-ranked teams beating top-ranked teams). In contrast, football rankings yield a
smaller α ≈ 0.44, indicating a relatively higher likelihood of large inversions. Such domain-specific
variations highlight the importance of learning distance metrics from data rather than fixing them a
priori.

Related Work Prior works on sampling and learning Mallows model assume a fixed distance function,
with Kendall’s tau distance (counting inversions between permutations) [21] being a particularly
common choice due to its closed-form expression [13, 16, 18, 26, 40]. However, it implicitly assumes
equal probabilities for all inversions. For example, in a web search ranking, swapping the top two
results has far more impact on user experience than swapping the 91st and 92nd, yet under Kendall’s
tau distance the inversions appear with equal probabilities. This uniform penalty is misaligned with
real-world tasks where the location of ranking errors matters—such as in recommendation systems,
sports ranking, and preference learning tasks.

Alternative metrics like Spearman’s footrule (L1) and rank correlation (L2) or more generally the
Lα model used in this paper, aim to mitigate the limitations of Kendall’s tau by assigning smaller
penalties to long-range inversions. Exact sampling under these metrics is known to be NP-hard [4],
leading to the development of approximate methods such as Markov chain Monte Carlo (MCMC)
algorithms [50, 47]. While these methods represent significant progress, prior to this work, their
computational efficiency was established only under the assumption of vanishing dispersion (β → 0).

To address the limitations of Kendall’s tau in another direction, generalizations of the Mallows
model have been proposed [7, 24, 31], introducing inversion penalties through graphical models
or mixtures of multiple Mallows distributions. While these methods increase expressiveness, they
often do so at the cost of substantial model complexity and reduced interpretability. In contrast,
the Lα-Mallows framework we study offers a principled and tunable way to learn the shape of the
distribution through a single metric parameter. Although such extensions are beyond the scope of this
work, the Lα-Mallows model could similarly be adapted to mixture or hierarchical frameworks to
further increase modeling flexibility.

From the perspective of estimation, extensive research has examined consistency and convergence
of Mallows model parameters [47, 3, 15, 30, 8]. In cases where the partition function is intractable
(e.g., for L1 and L2), and the maximum likelihood estimators cannot be computed in closed form,
estimation methods often rely on Bayesian approaches [47] or Monte Carlo Maximum Likelihood
Estimation (MCMLE) [17], which approximates the likelihood using sampling. Among more recent
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works, Tang [45] analyzed MLE under fixed metrics like Kendall’s tau and L2, identifying the central
ranking and potential upward biased estimator for the dispersion parameter. Mukherjee and Tagami
[32, 33] provided consistency results for generalized Mallows-type exponential families, though
assuming a known central ranking. Extending this line of research, our work jointly estimates all
model parameters, and establishes strong consistency guarantees for these estimators.

Alternative probabilistic frameworks include pairwise-comparison models such as Bradley–Terry
[6] and its generalization Plackett–Luce [27, 35], which assign latent scores to items and generate
rankings sequentially. Their computational simplicity makes them popular in practice [37, 48], but
unlike the Mallows model, the number of parameters grows linearly with the number of items. We
include the Plackett–Luce model as a high-parameter benchmark in our empirical evaluation and
consistently observe improved performance from our approach (see Section 4).

2 Parameter Estimation via Maximum Likelihood

Our first goal is to estimate the parameters of the Lα-Mallow’s model, including the central ranking
σ0, the dispersion parameter β0, and the distance function α0. Suppose we have observed m rankings
{π(1), . . . , π(m)} i each independently drawn from a Mallows distribution with unknown parameters
(α0, β0, σ0). To estimate these parameters, we use Maximum Likelihood Estimation (MLE), choosing
values that maximize the average log-likelihood of the observed data:

Lm(α, β, σ) =
1

m

m∑
l=1

logPα,β,σ(π
(l)) = − β

m

m∑
l=1

dα(π
(l), σ)− logZn(β, α).

where the probability of observing a ranking π is given by

Pα,β,σ(π) =
e−βdα(π,σ)

Zn(β, α)
, with Zn(β, α) =

∑
π∈Sn

e−βdα(π,σ),

and Sn is the set of all permutations over n items.
With these definitions in place, we now describe a two-step estimation of the MLE (Algorithm 1).

2.1 Step 1: Estimating the central ranking

First, observe that the partition function Zn(β, α) is invariant to the choice of the central ranking σ
(Proposition A.1 in Appendix A). Thus, minimizing the negative log-likelihood over σ effectively
reduces to solving a simpler optimization problem: σ̂m ∈ argminσ∈Sn

∑m
l=1 dα(π

(l), σ).

Since the value of α0 is unknown, we instead solve for L1 distance:

σ̂m ∈ argmin
σ

m∑
l=1

d1(π
(l), σ). (1)

This simplification is theoretically justified by the following lemma, which guarantees consistency of
the estimated central ranking regardless of the choice of the distance function.

Lemma 2.1. Let {π(1), . . . , π(m)} be m observed rankings, which are assumed to be sam-
pled i.i.d from Mallow’s model with parameters (α0, β0, σ0). Fix any α̃ > 0, and let σ̂m ∈
argminσ∈Sn

∑m
l=1 dα̃(π

(l), σ). Then as m → ∞ the central ranking estimator converges almost

surely σ̂m
P→ σ0. Further, σ0 is the unique minimizer of the expected distance, i.e.,

{σ0} = arg min
σ̃∈Sn

(
E[dα̃(Π, σ̃)]

)
,

where Π is a random permutation sampled from Pα0,β0,σ0
.

To see why Lemma 2.1 holds, consider any ranking that differs from σ0. Such a ranking contains
at least one inversion relative to σ0, and we show that correcting this inversion strictly reduces
the expected distance. Repeatedly applying this procedure yields a strictly decreasing sequence of
expected distances, ensuring that the true central ranking σ0 uniquely emerges as the global minimizer.
A complete proof appears in Appendix B.
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Crucially, the simplified optimization in (1) is computationally efficient. It corresponds exactly to a
minimum-weight perfect matching problem on a bipartite graph where the weight of an edge between
node i on the first side and node j on the second side is given by:

∑m
l=1 |π(l)(i)− j|. This matching

problem can be solved efficiently in near-linear time [14], giving the central ranking estimator:
Proposition 2.2. The minimizer σ̂m can be obtained by solving a minimum-weight perfect matching
problem in a bipartite graph, with each side of size n, where the edge weight between node i on one
side and node j on the other side is:

∑m
l=1 |π(l)(i)− j|.

2.2 Step 2: Estimating the distance and dispersion parameters

With the central ranking σ̂m fixed, we now estimate the continuous parameters (α, β). We formulate
this as a two-dimensional root-finding problem, where we seek parameter values that align empirical
and model-implied distances. Specifically,

Ψm(α, β; σ̂m) :=

(
− 1

m

m∑
i=1

dα(π
(i), σ̂m) + E[dα(Π, σ̂m)], − 1

m

m∑
i=1

ḋα(π
(i), σ̂m) + E[ḋα(Π, σ̂m)]

)
,

where Π is a random permutation with distribution Pα,β,σ̂m , and ḋα(π, σ) :=
∑n

i=1 |π(i) −
σ(i)|α log |π(i)− σ(i)| denotes the partial derivative of dα with respect to α.

The function Ψm corresponds to the gradient of the log-likelihood, with terms rescaled by β. We
estimate (α0, β0) by solving:

(α̂m, β̂m) ∈ {(α > 0, β > 0) : Ψm(α, β; σ̂m) = (0, 0)} .

In practice, a simple zero-order optimization method, such as the differential evolution algorithm [44],
can be used to solve this system efficiently. Note that each iteration of this method requires evaluating
the partition function and its derivatives, since we have

E[dα(Π, σ̂m)] = −∂ logZn(α, β)

∂β
, β · E[ḋα(Π, σ̂m)] = −∂ logZn(α, β)

∂α
.

For large n, we can use a sampling algorithm to approximate these expectations. In Section 3, we
develop a sampling algorithm which yields provable error guarantees for all α ≥ 1.

Algorithm 1: MLE for {α, β, σ} in the Mallows Model

Input :Samples {π(1), . . . , π(m)};

Step 1: Solve for σ̂m using minimum matching problem. σ̂m := argmin
σ

m∑
l=1

d1(π
(l), σ).

Step 2: Estimate parameters (α̂m, β̂m) by solving the system:

(α̂m, β̂m)← Solve {(α, β) : Ψm(α, β; σ̂m) = (0, 0)} .

return α̂m, β̂m, σ̂m.

Remark 2.3. While our estimation procedure works for any α > 0, the sampling algorithm developed
in Section 3.3 requires α ≥ 1 to guarantee provable efficiency and approximation accuracy when
evaluating the function Ψm. This constraint is purely computational and does not impact the
statistical properties of the estimator or its empirical performance. The sampler simply enables
efficient evaluation of Ψm, making root-finding for parameter estimation computationally tractable.

2.3 Statistical Guarantees

Under standard assumptions of i.i.d. samples from the Mallows distribution, the maximum likelihood
estimator proposed in Algorithm 1 jointly estimates the dispersion parameters and central ranking.
The result below establishes its statistical guarantees when the score function Ψm is computed exactly:
the estimator is consistent, and the continuous parameters converge at the optimal

√
m rate with an

asymptotically normal distribution.
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Theorem 2.4 (MLE Consistency and Asymptotic Normality). Suppose the rankings π(1), . . . , π(m)

are drawn i.i.d. from the Mallows distribution Pα0,β0,σ0 with true parameters α0, β0, σ0. Let
(α̂m, β̂m, σ̂m) be the estimators returned by Algorithm 1. Then, as m→∞, the following hold:

1. Consistency of σ̂m: The estimated central ranking σ̂m converges almost surely to the true
central ranking σ0. Moreover, the probability of error admits the finite-sample bound

P
(
σ̂m ̸= σ0

)
≤ n! · exp

(
− m

3n4

)
.

2. Consistency and asymptotic normality of (α̂m, β̂m): The estimators (α̂m, β̂m) converge in
probability to (α0, β0), and further is an efficient estimator; namely,

√
m

(
α̂m − α0

β̂m − β0

)
d−→ N

(
0, I−1

α0,β0

)
,

where Iα0,β0 is the Fisher information matrix, given by(
β2 Var[ḋα(Π, id)] β Cov[ḋα(Π, id), dα(Π, id)]

β Cov[ḋα(Π, id), dα(Π, id)] Var[dα(Π, id)]

)
,

where and id is the identity permutation and Π is a random permutation with distribution
Pα0,β0,id.

The main challenge for establishing consistency results on the parameters α and β, is that the log-
likelihood is not jointly convex in both parameters. However, by carefully analyzing the structure of
Mallow’s distribution, we show that the log-likelihood gradient admits a unique, stable minimizer.
For this purpose, we show that the function Ψ(α, β) is identifiable, by showing it is locally invertible
(Lemma B.2), and proper (Lemma B.3). These conditions, along with uniform convergence of Ψm to
Ψ, allow us to apply Theorem 5.9 of [46] to conclude consistency and asymptotic normality. Full
technical details appear in Appendix B.

Remark 2.5. The convergence rate in part (i) of Theorem 2.4 depends on the choice of the distance
exponent α̃ used in the first step of the algorithm. A direct optimization of the error bound shows
that setting α̃ = n/3 minimizes the upper bound on the probability of misidentifying the true ranking,
yielding the improved rate

P (σ̂m ̸= σ0) ≤ n! · exp
(
− m

54n2

)
.

However, for ease of implementation and interpretation, we set α̃ = 1 in all theoretical and empirical
results.

Approximate computation of Ψm. When exact evaluation of the gradient Ψm is not possible
–typically due to the intractability of the partition function lnZ(α, β) and its derivatives– one can
work with the approximations of Ψm.We show that the same statistical guarantees continue to
hold, provided the approximation error vanishes faster than m−1/2. The next result formalizes this
statement. Proof appear in Appendix B.

Theorem 2.6 (Asymptotic Normality under Approximate Score). Suppose the rankings
π(1), . . . , π(m) are drawn i.i.d. from the Mallows distribution Pα0,β0,σ0

with true parameters
α0, β0, σ0, where (α0, β0) lies in a compact subset of Θ ∈ (0,∞)2. Let (α̃m, β̃m) be approxi-
mate estimators that solve the estimating equation

Ψ̃m(α̃m, β̃m) := Ψm(α̃m, β̃m) + ∆(α̃m, β̃m) = 0,

where the approximation error ∆(α, β) satisfies sup(α,β)∈Θ ∥∆(α, β)∥ = o(m−1/2). Then, the
conclusions of Theorem 2.4 continue to hold for (α̃m, β̃m), i.e.,

√
m

(
α̃m − α0

β̃m − β0

)
d−→ N

(
0, I−1

α0,β0

)
.
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3 Efficient Sampling

Sampling rankings play a central role in many applications. In sports analytics, it enables the simula-
tion of tournament outcomes; in recommendation systems, it supports generating user suggestions.
Further, sampling is needed for computing the normalizing constant (also known as the partition
function) required for maximum likelihood estimation of the Mallows model.

Exact computation of this partition function becomes infeasible as n grows—indeed, it is equivalent
to Kemeny’s consensus ranking problem, which is known to be NP-hard [43]. Although Markov
chain Monte Carlo (MCMC) methods have been developed to approximate sampling [19, 5] (often
phrased in terms of approximating the permanent of a matrix), the MCMC methods rarely scale well
in practice [34, 42].

Instead of relying on these general-purpose algorithms, we exploit the structure of the Lα-Mallow’s
model to efficiently sample rankings. Our main result on sampling is summarized next:

Theorem 3.1. For any α ≥ 1 and β > 0, and any desired accuracy ϵ > 0, there exists a fully
polynomial-time approximation scheme (FPTAS) that, for the Mallow’s distribution, (i) estimates the
partition function Zn(β, α) within a multiplicative factor of 1− ϵ, and (ii) generates samples ϵ-close
(in total variation distance) to the true distribution.

Proof Outline: Throughout the proof, we assume without loss of generality that the central ranking is
identity (i.e., σ(i) = i). Our starting point is the construction of a matrix An whose permanent equals
Zn(β, α). Specifically, let An[i, j] = e−β|i−j|α , for i, j ∈ [n]. Note that sampling a permutation
according to the probabilities defined by An corresponds to sampling from the Lα-Mallow’s with
dispersion β. For instance, assigning items along the diagonal corresponds to the central ranking.

A crucial step in our proof (Lemma 3.2) shows that the probability of assigning any item to a position
far from its location in the central ranking decays exponentially. Using this property, we approximate
An by truncation – setting entries sufficiently far from the diagonal to zero. This truncation approach,
explained in detail in Sections 3.2, yields a probabilistic ranking model within ϵ-total variation
distance to the true distribution. The resulting truncated structure then enables the use of an efficient
dynamic programming (DP) algorithm for sequential sampling, which we present in Section 3.3.

3.1 Marginal Decay

We begin by showing that marginal probabilities in the Lα Mallow’s distribution exhibits exponential
decay away from the diagonal.

Lemma 3.2. Let α ≥ 1, β > 0. There exist constants k > 0 and c(α, β) < 1, independent of n, such
that for all i, j ∈ [n] with |j − i| ≥ k,

Pα,β (π(i) = j) ≤ c(α, β)|j−i|.

Furthermore, c(α, β) is monotone decreasing in α and β, with c(1, β) ≤ 2e−2β

1+e−2β .

This is the key lemma used to design the sampling algorithm. The proof carefully analyzes marginal
probability ratios Pα,β(π(i) = j + 1)/Pα,β(π(i) = j) by comparing permutations assigning i to
neighboring positions j vs. j + 1. Specifically, we define two types of mappings: The first involves
simple transpositions that often directly increase permutation probabilities by resolving inversions.
When such direct mappings fail to increase probability, we use a second, more complicated mapping
that ensures the resulting permutation moves closer to the identity and thus achieves higher probability.
Combining these two mapping types establishes geometric decay in probabilities with respect to
|j − i|. Full proof appears in Appendix C.1.

3.2 Truncated Distribution

We approximate Pα,β by truncating its distribution. Define the truncated matrix A
(k)
n by zeroing out

entries of An that lie far from the main diagonal: A(k)
n [i, j] = e−β|i−j|α1{|i−j|≤k}. Let P(k)

α,β denote
the probability distribution induced by this truncated matrix. We show that for k = O(log n) the
truncated distribution P(k)

α,β closely approximates the original Mallows distribution.
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Lemma 3.3. Given ϵ > 0, α ≥ 1, and β > 0, let k = log(n/ϵ)
(
log
(
1+e−2β

2e−2β

))−1

, then

1. ∥Pα,β − P(k)
α,β∥TV ≤ ϵ, where TV denotes the total variation distance.

2. per(A(k)
n ) is a multiplicative approximation of Zn(α, β), i.e., |per(An)−per(A(k)

n )|
per(An)

≤ ϵ.

To prove this result, we use Lemma 3.2 which shows that the probability of a permutation containing
at least one element displaced by more than distance k decays exponentially with k (Lemma 3.2).
Therefore, if we choose k = O(log n), a union bound over all indices yields that the total variation
distance between P(k)

α,β and Pα,β is sufficiently small. Full proof appears in Appendix C.2.

3.3 Sampling from Truncated Distribution

The final step is to efficiently sample a permutation π from the (truncated) distribution P(k)
α,β(π). We

achieve this via dynamic programming (DP), structured in layers that assign elements to positions.
Specifically, a DP state DP [i][s] tracks the cumulative weight of all partial permutations that have
assigned the first i − 1 elements, where the state s indicates available columns. Recall that each
element i sampled from P(k)

α,β(π) can be only matched to those ±k around i. Thus, the state s is a
binary vector of length 2k, marking columns as available (0) or assigned (1). Transitions between
layers assign the current element i to an available column, updating the state to mark this column as
assigned, and weighting the transition by the corresponding entry from A

(k)
n (see Figure 1). The final

DP state at layer captures the total weight of all perfect matchings, equal to the permanent of A(k)
n .

Once the forward DP pass is complete, sampling can be done by reversing through DP states, choosing
transitions with probability proportional to their DP-computed weights (marginal probabilities).
Detailed algorithms and rigorous analysis for DP updates, graph construction, and sampling appear
in Appendices C.3 and C.4 (Algorithms 2 and 3).

Lemma 3.4. For any given n and k: Algorithm 2 constructs the DP table and per(A(k)
n ) in time

O
(
n
(
2k
k

))
. Then given the precomputed DP table, Algorithm 3 samples each permutation from µ̂

(k)
n

in time O (nk).

Combining Lemma 3.4 with the truncation guarantee in Section 3.2, we obtain the PTAS described
in Theorem 3.1. Specifically, for k = O(log(n/ϵ)) the total variation distance between the true
Mallow’s distribution and the truncated model is at most ϵ. Under this setting, the preprocessing step
takes time O(ϵ−Cn1+C), where C = 2 log((1 + e−2β)/2e−2β) (constant derived from Lemma 3.3).
After this setup, each sample can be drawn in O(n log(n/ϵ)) time. Together, these results yield a
PTAS for both partition function estimation and sampling.

4 Experiments

We empirically evaluate our methods with two primary goals: (1) assessing the predictive performance
of our model compared to classical ranking models on real-world and synthetic datasets; and (2)
validating our approximation scheme for the partition function Zn(β, α) and the sampling algorithm.

Reproducibility and Computational Resources. Our implementation, which also includes tools for
sampling and learning from Lα Mallows models, is available at [2]. The MLE evaluation experiments
were conducted on a server with dual AMD EPYC 7763 64-Core processors and 1.5 TB of RAM.
Sampling experiments were run on an Intel Core i7 CPU with 16 GB RAM.
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Figure 1: DP state transitions showing available (white) and assigned (blue) columns within bandwidth
(k = 2). Matched edges for i are shown in orange; DP values represent weights of partial matchings.

4.1 Predictive Performance of the Lα-Mallow’s Model

Datasets. We evaluate our methods on the following datasets:
American college football rankings: We use weekly power rankings of college football teams
from the 2019 to 2021 seasons, sourced from [38], providing over 4,100 distinct observed rankings
across various expert sources. These rankings—known as power rankings—are ordinal lists produced
by independent media outlets and analysts. Each ranking reflects an expert’s assessment of team
strength during a particular week, typically incorporating factors such as win–loss records, strength
of schedule, point differentials, and recent performance. Unlike standings, which are derived purely
from match outcomes, power rankings aim to capture an underlying strength signal. We focus on
learning the top 10 teams identified in [39]: Georgia, Alabama, Michigan, Cincinnati, Baylor, Ohio
State, Oklahoma State, Notre Dame, Michigan State, and Oklahoma. To evaluate scalability, we also
conduct experiments on a larger set of the top 100 most frequently ranked teams.
College basketball rankings: We similarly use weekly power rankings from the 2020 and 2021
college basketball seasons, also sourced from [38], resulting in over 1,700 observed rankings. We
further, select the top 10 teams as reported in [1]: Gonzaga, Illinois, Baylor, Michigan, Alabama,
Houston, Ohio State, Iowa, Texas, and Arkansas. For large-scale evaluation, we additionally sample
a set of 100 teams at random.
SUSHI preference rankings: We also include the SUSHI preference dataset from [20], which
contains 5,000 human-annotated rankings over 10 different types of SUSHI.
Synthetic data: We generate rankings using our sampler (Algorithm 3). The parameters are set to
α = 1.5, β = 0.5, with n = 15 items, and the truncation of k = 9 is used for sample generation.

Data Splitting Strategy. To avoid temporal leakage in the sports datasets, we train on earlier
rankings and hold out the final sixth of the data for evaluation. We repeat this sampling procedure
independently over 50 trials to derive confidence intervals. In each of 50 trials, we randomly sample
700 training and 150 testing examples for basketball, and 800 training and 250 testing examples for
football. For the SUSHI dataset, we conduct 25 independent trials, each with a random 80%- 20%
training-testing split. We report mean and standard deviation across trials.

Baselines. To highlight the performance of our model, we compare against two classical models:
Plackett–Luce (PL) model [35]: The PL model is a classical ranking model that assumes rankings
are generated sequentially. At each stage, the probability of choosing item i for the next available
position is proportional to a parameter θi. Once selected, the item is removed from the pool, and the
process continues with the remaining items. Formally,

PPL
θ (π) =

∏n
i=1 θπ(i)∏n

i=1

(∑n
j=i θπ(j)

) .
Mallow’s τ (Kendall’s tau distance): Mallow’s τ assumes the underlying distance metric is the
Kendall’s tau distance dτ (π, σ) [21], which counts the number of pairwise disagreements (inversions)
between π and σ:

dτ (π, σ) = |{(i, j) : i < j, (π(i) < π(j)) ̸= (σ(i) < σ(j))}| .
We defer the details of implementation to the Appendix D.
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Metrics. We measure predictive accuracy via the following metrics: (1) Top-1/top-5 hit rates:
Probability the test ranking’s top item appears in the top-1/top-5 predicted ranks (2) Spearman’s ρ:
rank correlation based on squared rank differences; (3) Kendall’s τ : correlation based on pairwise
agreements; (4) Hamming distance: fraction of differing positions; (5) Pairwise accuracy: agreement
ratio of item pairs’ relative ordering. Arrows next to each metric indicate whether higher (↑) or lower
(↓) values correspond to better performance. Full description of these metrics appears in Appendix D.

MLE Evaluation on Real-World Datasets. Tables 1, 2, and 3 present results for football, basket-
ball, and SUSHI datasets, respectively. The best results are bold-faced, showing that the Lα-Mallows
model consistently outperforms the Plackett-Luce model and Mallow’s τ model over several met-
rics on all datasets. Notably, the basketball dataset results (Table 2) highlight particularly poor
performance of the Plackett–Luce model, indicated by negative correlation values, possibly due to
overfitting. The better generalization of the Lα Mallows model is reflected in significantly higher
predictive accuracy.

The parameters estimated from the Lα-Mallows model offer meaningful insights into ranking be-
havior. The dispersion parameter (β) captures stability—lower values imply frequent ranking shifts,
while higher values indicate stability. The learned distance parameter quantifies ranking dynamics,
highlighting deviations of the optimal model from traditional models like Kendall’s τ and Spearman’s
ρ (e.g. α = 2). The higher estimated α ≈ 1.1 indicates a lower likelihood of long-range swaps (e.g.,
a team ranked 10th defeating a top-ranked team) compared to football, which has a smaller α ≈ 0.4,
allowing more frequent long-range swaps.

Lα-Mallow Mallow’s τ Plackett–Luce
Estimated α 0.442 (± 0.061) – –
Estimated β 0.455 (± 0.051) – –
↑Spearman’s ρ correlation 0.094 (± 0.010) 0.070 (± 0.016) 0.093 (± 0.009)
↑Kendall’s τ correlation 0.070 (± 0.007) 0.052 (± 0.011) 0.065 (± 0.007)
↓Hamming distance 0.888 (± 0.005) 0.892 (± 0.002) 0.920 (± 0.001)
↑Pairwise accuracy (%) 53.5 (± 0.4) 52.6 (± 0.6) 53.3 (± 0.3)
↑Top-1 hit rate (%) 8.0 (± 0.1) 6.9 (± 0.7) 3.5 (± 0.1)
↑Top-5 hit rate (%) 41.9 (± 0.5) 41.1 (± 2.9) 30.5 (± 0.7)

Table 1: College football dataset, model out-of-sample performance averaged over 50 independent
trials (mean ± standard deviation).

Lα-Mallow Mallow’s τ Plackett–Luce
Estimated α 1.096 (± 0.056) – –
Estimated β 0.178 (± 0.019) – –
↑Spearman’s ρ correlation 0.269 (± 0.005) 0.174 (± 0.011) −0.020 (± 0.009)
↑Kendall’s τ correlation 0.199 (± 0.004) 0.128 (± 0.009) −0.010 (± 0.007)
↓Hamming distance 0.872 (± 0.001) 0.880 (± 0.001) 0.919 (± 0.001)
↑Pairwise accuracy (%) 59.9 (± 0.2) 56.4 (± 0.4) 49.5 (± 0.3)
↑Top-1 hit rate (%) 22.7 (± 0.6) 17.5 (± 0.3) 4.9 (± 0.3)
↑Top-5 hit rate (%) 77.7 (± 1.0) 68.4 (± 0.5) 57.7 (± 1.6)

Table 2: College basketball dataset, model out-of-sample performance averaged over 50 independent
trials (mean ± standard deviation).

Large n Regime: MLE Evaluation on 100-Team College Sports Rankings. Our learning algorithm
can efficiently scale to rankings over a large number of items (see the theoretical guarantees in 3.1).
To evaluate the robustness and scalability of our model, we compared the performance of the Lα

Mallow model against Kendall’s τ -based model and Placket–Luce model on college sports datasets,
this time considering 100 teams.

For the football dataset, teams were selected with the highest participation rates to ensure a sufficient
number of full rankings remained. For the basketball dataset, 100 teams were selected at random.
The results for both datasets are reported in Table 4 and Table 5, respectively. All experiments were
conducted with truncation size k = 7.
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Lα-Mallow Mallow’s τ Plackett-Luce
Estimated α 0.764 (± 0.378) – –
Estimated β 0.159 (± 0.172) – –
↑ Spearman’s ρ correlation 0.043 (± 0.006) 0.031 (± 0.012) -0.050 (± 0.003)
↑Kendall’s τ correlation 0.031 (± 0.005) 0.023 (± 0.009) -0.037 (± 0.002)
↓Hamming distance 0.893 (± 0.001) 0.897 (± 0.001) 0.916 (± 0.000)
↑Pairwise accuracy (%) 51.6 (± 0.2) 51.1 (± 0.4) 48.2 (± 0.1)
↑Top-1 hit rate (%) 10.2 (± 0.6) 10.6 (± 0.6) 9.3 (± 0.1)
↑Top-5 hit rate (%) 52.0 (± 1.0) 51.7 (± 1.6) 49.5 (± 0.3)

Table 3: SUSHI dataset, model out-of-sample performance averaged over 25 independent trials (mean
± standard deviation).

Tables 4 and 5 report out-of-sample performance averaged over 50 independent trials. Across both
datasets, the Lα-Mallows model significantly outperforms classical baselines (Mallows-τ , Plackett–
Luce) across all metrics. The flexibility of choosing the distance metric is particularly evident as
the number of teams increases in both datasets, the Lα Mallow model achieves more than fivefold
improvement in top-1 hit rate compared to the baselines, significantly outperforming both Kendall’s
τ and Placket–Luce models.

Lα-Mallow Mallow’s τ Plackett–Luce
Estimated α 0.002 (± 0.002) – –
Estimated β 0.504 (± 0.023) – –
↑Spearman’s ρ correlation 0.759 (± 0.006) 0.478 (± 0.006) 0.373 (± 0.006)
↑Kendall’s τ correlation 0.564 (± 0.005) 0.328 (± 0.005) 0.253 (± 0.004)
↓Hamming distance 0.973 (± 0.000) 0.984 (± 0.000) 0.986 (± 0.000)
↑Pairwise accuracy (%) 96.378 (± 0.100) 91.754 (± 0.152) 90.298 (± 0.138)
↑Top-1 hit rate (%) 12.873 (± 0.941) 2.212 (± 0.807) 1.749 (± 0.250)
↑Top-5 hit rate (%) 56.465 (± 2.315) 10.857 (± 1.401) 7.205 (± 0.605)

Table 4: College basketball dataset for 100 teams, model out-of-sample performance averaged over
50 independent trials (mean ± standard deviation).

Lα-Mallow Mallow’s τ Plackett–Luce
Estimated α 0.003 (± 0.002) – –
Estimated β 0.516 (± 0.030) – –
↑Spearman’s ρ correlation 0.454 (± 0.006) 0.387 (± 0.007) 0.138 (± 0.005)
↑Kendall’s τ correlation 0.318 (± 0.004) 0.264 (± 0.005) 0.093 (± 0.004)
↓Hamming distance 0.981 (± 0.000) 0.986 (± 0.000) 0.989 (± 0.000)
↑Pairwise accuracy (%) 91.163 (± 0.165) 88.134 (± 0.178) 86.944 (± 0.133)
↑Top-1 hit rate (%) 2.057 (± 0.535) 0.294 (± 0.399) 1.524 (± 0.899)
↑Top-5 hit rate (%) 23.590 (± 3.979) 2.386 (± 1.240) 7.097 (± 1.154)

Table 5: College football dataset for 100 teams, model out-of-sample performance averaged over 50
independent trials (mean ± standard deviation).

Notably, the estimated distance parameter (α) remains close to zero in both datasets, suggesting
that the model adaptively flattens the penalty for long-range swaps when necessary, capturing the
heterogeneity in upset dynamics across sports. This reinforces the utility of learning α from data
rather than fixing it a priori.

Effect of the Truncation size.
We demonstrate the exponential decay of the ℓ2 estimation error on synthetic data. Specifically, we
generate 50 training samples over 15 items using our sampling method with truncation order k = 9
and parameters α0 = 1 and β0 = 1. We then train our model using varying truncation levels and
report the mean and standard deviation of the estimation error in Figure 2. Notably, even though the
training data was generated with a truncation of order 9, using a truncation as small as k = 5 yields
stable and accurate estimates, highlighting the robustness of the model.
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Figure 2: Estimation error versus the truncation size used for training Lα Mallow’s model. Each point
shows the ℓ2-test error, averaged across 25 independent trials. As k increases, the model receives
exponentially more information, leading to an exponential decay rate of the estimation error.

Synthetic Validation. We further establish the accuracy and robustness of MLE on the synthetic
dataset. Specifically, we train our model using samples generated by the truncated sampling algorithm
(Algorithm 3) with a smaller truncation parameter (k = 6) compared to the truncation parameter used
to generate the original synthetic data (k = 9). Despite this deliberate mismatch, Figure 3 illustrates
that our MLE procedure accurately recovers the true underlying parameters α and β, highlighting the
robustness of our estimation method to the truncation choice.

0 100 200 300 400
Number of samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

|α
−
α

0
|

0 100 200 300 400
Number of samples

0.00

0.05

0.10

0.15

0.20

0.25

|β
−
β

0
|

Figure 3: The estimation error of α (left) and β (right), for different training sizes over the synthetic
data with α0 = 1.5 and β0 = 0.5. The shaded area represents the standard deviation, computed
over 25 independent trials. Our results show negligible estimation bias, despite using the truncation
algorithm.

The synthetic experiments, where the ground truth parameters are known, confirm the accuracy and
robustness of our parameter recovery.

Overall, our experiments validate that the Lα-Mallows model provides superior predictive accuracy,
meaningful parameter interpretability, and computational efficiency, positioning it as an attractive
method for ranking analysis across diverse datasets.

4.2 Validation of the Sampling Algorithm

Partition function. We first validate the accuracy of our approximation for the partition function
Zn(α, β). We quantify approximation quality by measuring the relative error: |Zn(α,β)−Ẑn(α,β)|

Zn(α,β)
,

across different values of n, with a fixed truncation parameter k = 3. Additionally, we report the
efficiency of our estimation by comparing our approximation’s runtime against the exact computation,
which computes the partition function constant exactly. We use Ryser’s algorithm [41] , which is
regarded as one of the most efficient permanent computation algorithms. Despite using Ryser’s
algorithm, we still observe the overwhelming difference in the efficiency of our approximation, while
only enduring negligible error. Table 6 summarizes our findings. We consistently observe small
relative errors (on the order of 10−4), validating the high accuracy of our approximation. More
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importantly, our approximation significantly reduces computation time, especially as n increases.
Figure 4 provides a visual comparison of runtime ratios and relative errors across different α and β.

n Relative error Algorithm 2 Exact computation Time ratio
time (s) time (s) (Exact/Alg. 2 )

6 (1.25± 0.03)× 10−4 0.011 (±0.002) 0.355 (±0.012) 32.0 (±5.9)
8 (2.10± 0.05)× 10−4 0.027 (±0.003) 32.25 (±0.98) 1194.5 (±135.8)

10 (2.94± 0.06)× 10−4 0.057 (±0.004) 6471.3 (±220.25) 113531.6 (±8166.4)
Table 6: Relative error and runtime comparison between our approximation method (truncation order
k = 3) and exact partition function computation via Ryser’s algorithm, with parameters α = 1 and
β = 2. Results are averaged over 1000 trials, and 95% confidence intervals are reported.

Figure 4: Runtime comparison between the permanent approximation (k = 3) and the full computa-
tion for varying values of n.

Limitations and Future Work. Our results highlight several promising directions, yet they also
point clearly to opportunities for future work. A fundamental theoretical limitation lies in our efficient
sampling algorithm, which currently requires a (α ≥ 1). Developing computationally efficient
sampling for the broader class of distance functions with α < 1 remains open. On the practical
side, extending the empirical scope beyond sports rankings—potentially examining applications in
recommendation systems, voting scenarios, or other domains—represents an exciting and natural
next step, allowing further validation of the generalized Lα-Mallows framework.
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A Proofs for Computing Central Ranking Estimator

We start by proving that normalizing constant Zn is independent of choice of σ.
Proposition A.1 (Invariance of Partition Function). For any fixed parameters α > 0 and β > 0, the
partition function

Zn(β, α) =
∑
π∈Sn

e−βdα(π,σ)

is independent of the central ranking σ ∈ Sn.

Proof. Consider any two permutations σ, σ′ ∈ Sn. Define the bijective mapping fσ,σ′ : Sn → Sn by

fσ,σ′(π) = π ◦ σ−1 ◦ σ′,

which satisfies fσ,σ′(σ) = σ′. Since fσ,σ′ is a bijection, suming over permutations is invariant under
re-indexing. Thus,

Zn(β, α, σ
′) =

∑
π∈Sn

e−βdα(fσ,σ′ (π),σ′) =
∑
π∈Sn

e−βdα(π◦σ−1◦σ′,σ′).

Now, observe by definition of the distance dα (which depends only on relative positions of elements),
we have

dα(π ◦ σ−1 ◦ σ′, σ′) = dα(π, σ).

Hence,
Zn(β, α, σ

′) =
∑
π∈Sn

e−βdα(π,σ) = Zn(β, α, σ).

Since this equality holds for any pair of permutations σ, σ′, the partition function is invariant and thus
independent of the choice of the central ranking.

Next we bring the proof of Proposition 2.2, which reduces the optimization problem regarding σ to
minimum matching problem.

Proof of Proposition 2.2. Consider a complete bipartite graph G = (U ∪ V,E) with |U | = |V | = n.
Label the vertices in U by u1, u2, . . . , un and those in V by v1, v2, . . . , vn. For each edge e = (ui, vj),
assign the weight

w(i, j) = −
m∑
l=1

∣∣π(l)(i) − j
∣∣α.

Any perfect matching M ⊆ U ×V corresponds to a unique permutation σ ∈ Sn via the rule σ(i) = j
whenever the edge (ui, vj) ∈ M . Indeed, M must match every ui to exactly one vj , and thus σ is
well-defined and bijective on {1, . . . , n}.
Under this correspondence, the matching M has total weight

∑
(ui,vj)∈M w(i, j), which is exactly

n∑
i=1

m∑
l=1

∣∣π(l)(i) − σ(i)
∣∣α = −

m∑
l=1

dα
(
π(l), σ

)
.

Hence finding optimal σ is equivalent to finding a minimum weight perfect matching.

B Proof of Theorem 2.4

B.1 Consistency of σ̂m (Proof of Lemma 2.1)

We start with the first part of the theorem which is consistency of σ̂m. Recall that σ̂m is answer to the
following optimiztion

σ̂m = arg min
σ∈Sn

1

m

m∑
l=1

dα(π
(l), σ).
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Note that as the sample size grows, by the law of large number the right hand side converges to
Eπ∼Pα0,β0,σ0

[dα0(π, σ)]. We start the proof by showing that in the limit, we can change the distance
function inside, and for any choice of α > 0 the unique minimizer of this is σ0.

So, we start by proving the second part of Lemma 2.1, i.e., our goal is to show that given any α̃ > 0,
the following holds

arg min
σ′∈Sn

EΠ∼Pα0,β0,σ0

[
dα̃(Π, σ′)

]
= {σ0}.

Proof. Define

F (x) =
∑
π∈Sn

( n∑
u=1

|π(u)− xu|α̃
)
Pα0,β0,σ0(π) =

n∑
u=1

E
[
|Π(u)− xu|α̃

]
,

where Π is sampled from Pα0,β0,σ0
. Notice that if we restrict x to permutations in Sn, then we recover

the original problem. We show that whenever x ̸= σ0, performing a sequence of transpositions that
brings x closer to σ0 strictly decreases F (x), and hence the unique minimizer is x = σ0.

For simplicity, assume σ0 is the identity permutation, and assume there is another σ′ minimizing F .
We will prove uniqueness of the minimizer in two stages: (i) First we show, swapping any inverted
pair of positions strictly decreases the objective. (ii) In the second step, by repeatedly correcting
inversions we decrease F (x) down to F (σ0).

Step 1: Inversion swap. Suppose x = (x1, . . . , xn) ∈ Rn and there is an inverted pair of positions
k < i with xk > xi. Let x′ = (x′

1, . . . , x
′
n) be the vector obtained by swapping xk and xi:

x′
k = xi, x′

i = xk, x′
u = xu for u /∈ {k, i}.

Then we claim that
F (x′) < F (x).

Set s = xi, t = xk so that s < t. Observe that only the kth and ith terms in F change under the
swap. Indeed,

F (x)− F (x′) = E
[
|Π(k)− t|α̃

]
+ E

[
|Π(i)− s|α̃

]
−
(
E
[
|Π(k)− s|α̃

]
+ E

[
|Π(i)− t|α̃

])
.

Rearrange:

F (x)− F (x′) =
(
E[|Π(i)− s|α̃]− E[|Π(i)− t|α̃]

)
−
(
E[|Π(k)− s|α̃]− E[|Π(k)− t|α̃]

)
.

Define
D(j) = |j − s|α̃ − |j − t|α̃, j = 1, . . . , n.

Since α̃ > 0, x 7→ |x− s|α̃ − |x− t|α̃ is strictly increasing when x ∈ [s, t], so

∆j = D(j)−D(j−1) =
∣∣j−s∣∣α̃−∣∣j−1−s∣∣α̃ − ∣∣j−t∣∣α̃+∣∣j−1−t∣∣α̃ > 0 for j = s+1, . . . , t,

and ∆j ≥ 0 otherwise (in fact ∆j = 0 for α̃ = 1 when j ̸∈ {s+ 1, s+ 2, . . . , t}).
Then note that

E[|Π(u)− s|α̃]− E[|Π(u)− t|α̃] =
n∑

j=1

D(j)Pα0,β0,σ0(Π(u) = j)

=

n∑
j=2

[
D(j)−D(j + 1)

]
Pα0,β0,σ0(Π(u) < j)

= −
t∑

j=s+1

∆j+1Pα0,β0,σ0(Π(u) < j).

Applying this for u = i and u = k gives

F (x)− F (x′) =

t∑
j=s+1

∆j+1

[
Pα0,β0,σ0

(Π(k) < j)− Pα0,β0,σ0
(Π(i) < j)

]
.
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Since ∆j ≥ 0 and it strictly positive for j ∈ s+ 1, ..., t, it remains to show Pα0,β0,σ0(Π(k) < j) ≥
Pα0,β0,σ0(Π(i) < j) for each j. To see this, define an involution ϕ on Sn by swapping the values in
positions k and i, where k < i. Whenever π satisfies π(k) < π(i), by repeating the argument above,

dα0

(
ϕ(π), id

)
− dα0(π, id) =

∣∣π(i)− k
∣∣α0 −

∣∣π(i)− i
∣∣α0 − (

∣∣π(k)− k
∣∣α0 −

∣∣π(k)− i
∣∣α0

) > 0,

so Pα0,β0,σ0
(Π = ϕ(π)) < Pα0,β0,σ0

(Π = π). Hence summing over all π with π(k) < j ≤ π(i)
yields

Pα0,β0,σ0

(
Π(k) < j, Π(i) ≥ j

)
> Pα0,β0,σ0

(
Π(i) < j, Π(k) ≥ j

)
.

Adding Pα0,β0,σ0

(
Π(k) < j,Π(i) < j

)
to both sides gives Pα0,β0,σ0(Π(k) < j) >

Pα0,β0,σ0

(
Π(i) < j

)
. Therefore, each term in the sum is nonnegative, and at least one is strictly

positive, so F (x)− F (x′) > 0. This completes the proof of the first part.

Step 2: Eliminating inversions via successive swaps. We now transform any x ̸= σ0 to σ0 by a
finite sequence of single-inversion swaps, each of which strictly decreases F (x). To see this, not that
if x ̸= σ0 (recall that we assume σ0 is the identity), then the sequence (x1, . . . , xn) is not increasing,
so there exists at least one pair of indices

1 ≤ k < i ≤ n with xk > xi.

By Step 1, swapping the two entries at positions k and i produces a new permutation x′ with
F (x′) < F (x), because (k, i) was an inversion. Now, by repeating this argument, since there are
only finitely many permutations and F strictly decreases at each step, the process terminates in a
finite number of swaps, necessarily at the unique no-inversion state x = σ0.

Putting this all together, we conclude that any x ̸= σ0 can be changed to get a lower F value, so

σ0 = arg min
x∈Sn

F (x) = arg min
σ′∈Sn

Eα0,β0,σ0

[
dα̃(Π, σ′)

]
,

and the minimizer is unique.

Now, we are ready to finish the proof of Lemma 2.1 (and hence the first part of Theorem 2.4). Define
the empirical objective

Fm(σ′) =
1

m

m∑
j=1

d1(π
(j), σ′),

and let
σ̂m = arg min

σ′∈Sn

Fm(σ′) (ties broken arbitrarily).

We want to prove that σ̂m → σ almost surely.

Since Sn is finite, the Strong Law of Large Numbers gives, for each σ′ ∈ Sn,

Fm(σ′) =
1

m

m∑
j=1

dα̃(π
(j), σ′)

a.s.−−→ F (σ′) = EΠ∼Pα0,β0,σ0

[
dα̃(Π, σ

′)
]
.

Since there are only n! different permutations, the convergence is uniform:

sup
σ′∈Sn

∣∣Fm(σ′)− F (σ′)
∣∣ a.s.−−→ 0.

Since F has a unique minimizer at σ0 (as proved above), set δ = minσ′ ̸=σ0 [F (σ′)− F (σ0) ] > 0.
By uniform convergence, for large enough m we have supσ′ |Fm(σ′)− F (σ′)| < δ/2. Therefore,
for all σ′ ̸= σ0,

Fm(σ0) ≤ F (σ0) +
δ
2 < F (σ′)− δ

2 ≤ Fm(σ′).

Thus for large enough m the empirical minimizer must converge to the true ranking (σ̂m → σ0). This
proves almost sure convergence σ̂m

a.s.→ σ0.

For the tail bound, we have a crude bound of 0 ≤ dα̃(π, σ
′) ≤ nα̃+1, so by Hoeffding’s inequality,

for any fixed σ′ ̸= σ0,

P
(∣∣Fm(σ′)− F (σ′)

∣∣ ≥ δ
2

)
≤ 2 exp

(
− 2m(δ/2)2

(nα̃+1)2

)
= 2 exp

(
− mδ2

2n2α̃+2

)
,
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here the probability is over m i.i.d samples from Pα0,β0,σ0 Applying the union bound over all
|Sn| = n! choices of σ′,

P
(
sup
σ′
|Fm(σ′)− F (σ′)| > δ/2

)
≤ n! · exp

(
− mδ2

2n2α̃+2

)
As a result,

P
(
σ̂m ̸= σ0

)
≤ n! · exp

(
− mδ2

2n2α̃+2

)
which in particular decays to 0 exponentially in m.

To finish the proof of the first part, it remains to find lower bound for

δ = min
σ′ ̸=σ0

[
F (σ′)− F (σ0)

]
> 0.

Without loss of generality, assume that σ0 is the identity permutation. As shown earlier, each
transposition strictly decreases F , so it suffices to consider only transpositions. Let σ′ = (i j) be
a transposition, and define h := |i− j| ≥ 1 as the separation between the swapped positions. The
expected cost difference decomposes as:

δi,j := E
[
|Π(i)− j|α̃ − |Π(i)− i|α̃

]
+ E

[
|Π(j)− i|α̃ − |Π(j)− j|α̃

]
.

Then δ ≥ mini<j δi,j .

Since Π(i),Π(j), i, j ∈ {1, . . . , n} are integers, the function | · |α̃ is evaluated only on integer
arguments. The minimum nonzero difference of the form |x− j|α̃ − |x− i|α̃ must be at least

min
ij

δi,j ≥ min
0≤z≤n−1

[
(z + 1)α̃ − zα̃

]
= nα̃ − (n− 1)α̃,

since the function z 7→ (z + 1)α̃ − zα̃ is decreasing in z for α̃ > 0. By using the fact that
nα̃ − (n− 1)α̃ ≥ α̃(n− 1)α̃−1 and that (1− 1

n )
2α ≥ 1− 2α

n − 2α2

n2 , we the desired inequality:

P
(
σ̂m ̸= σ0

)
≤ n! · exp

(
−m

(
α̃2

2n4 (1−
2α̃

n
)
))

.

If we let α̃ = 1, we get the desired inequality.

B.2 Consistency of the MLE for α̂m, β̂m (Part 2 of Theorem 2.4)

Throughout this section, we assume σ̂m is estimated in the first step of MLE. Define the normalized
likelihood function:

ℓm(α, β) =
1

m

m∑
j=1

log f
(
π(j);α, β, σ̂m

)
= −β

1

m

m∑
j=1

dα(π
(j), σ̂m) − lnZ(α, β),

and let θ̂m = (α̂m, β̂m) be any maximizer of ℓm over Θ = (0,∞)× (0,∞). Further define,

Ψ(θ) := E[Ψm(θ)], where θ = (α, β).

Recall the definition of Ψm from Step 2 of Algorithm 1. We verify two key properties:

1. Uniform convergence:
sup
θ∈Θ

∥∥Ψm(θ)−Ψ(θ)
∥∥ P−→ 0.

2. Identifiability of the zero: Let θ0 = (α0, β0) Ψ(θ0) = 0, and for every ε > 0,

inf
∥θ−θ0∥≥ε

∥∥Ψ(θ)
∥∥ > 0.

Once these two properties are proved, Theorem 5.9 of [46] yields θ̂m
P−→ θ0 = (α0, β0). We start to

prove identifiability.
Lemma B.1. (Identifiability) The population score Ψ(θ) satisfies Ψ(θ0) = 0 and for every ε > 0,

inf
∥θ−θ0∥≥ε

∥Ψ(θ)∥ > 0.
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Proof. A straightforward calculation gives

Ψ(θ) =

(
Eα0,β0

[
ḋα(π)

]
− Eα,β

[
ḋα(π)

]
Eα0,β0 [dα(π)]− Eα,β [dα(π)]

)
,

here since σ̂m is fixed, with abuse of notation we write dα(π) instead of dα(π, σ̂m) and Eα′,β′ instead
of EP′

α,β′,σ̂m . With this, proving identifiability reduces to showing that the system of equations

Eα,β [dα(π)] = Eα0,β0
[dα(π)], Eα,β [ḋα(π)] = Eα0,β0

[ḋα(π)]

admits a unique solution (α, β) = (α0, β0).

To facilitate the argument, we fix (α, β) and view the left-hand sides as functions of (α0, β0). In
this formulation, identifiability reduces to proving that for each fixed (α, β), there exists a unique
(α0, β0) satisfying the system.

For this purpose, we introduce the auxiliary map

fα(α0, β0) =
(
Eα0,β0

[dα(π)], Eα0,β0
[ḋα(π, )]

)
,

where α is fixed. That is, while the distance function dα is fixed, the true data-generating parameters
(α0, β0) varies. The key idea is that if fα is injective, then the solution to the system is unique.
We now proceed to prove that fα is a global diffeomorphism onto its image. To this end, we
first establish local invertibility and properness, which together imply global invertibility by the
Hadamard–Caccioppoli theorem.

Lemma B.2 (Local Invertibility). For any α > 0, the function fα is locally invertible on (0,∞)2.

Proof. It suffices to show that the Jacobian matrix Jfα(α0, β0) is invertible at every point (α0, β0) ∈
(0,∞)2. Direct calculation gives:

Jfα(α0, β0) = −

Covα0,β0
(dα(π), dα0

(π)) β Covα0,β0

(
dα(π), ḋα0

(π)
)

Covα0,β0

(
ḋα(π), dα0

(π)
)

β Covα0,β0

(
ḋα(π), ḋα0

(π)
)
 .

Define the two-dimensional random vectors:

a1(π) =
(
dα0

(π), ḋα0
(π)
)
, a2(π) =

(
dα(π), ḋα(π)

)
.

Then
det (Jf α̃(α, β)) = β · det (Covα,β (a1(π),a2(π))) .

When (α0, β0) = (α, β), we have a1(π) = a2(π), and the covariance matrix reduces to the variance
of a1(π), which is positive definite.

When α0 ̸= α, suppose, for contradiction, that Covα0,β0
(a1(Π),a2(Π)) is singular. Then there must

exist nonzero vectors λ(1), λ(2) ∈ R2 such that〈
λ(1),a1(Π)

〉
+
〈
λ(2),a2(Π)

〉
is constant almost surely. (2)

Since Pα0,β0 has full support on the finite set Sn, this equality holds for every π ∈ Sn.

To derive a contradiction, we consider a few examples. Let π1 = (2, 4) denote the transposition
swapping elements 2 and 4, and π2 denote the composition of π1 with the transposition swapping 1
and 3, that is, π2 = (1 3)(2 4). Applying (2) to both π1 and π2, we have:〈

λ(1),a1(π1)
〉
+
〈
λ(2),a2(π1)

〉
=
〈
λ(1),a1(π2)

〉
+
〈
λ(2),a2(π2)

〉
.

By construction, we observe:

a1(π2) = a1(π1) + a1((1 3)), a2(π2) = a2(π1) + a2((1 3)).

Substituting the expressions for π2, we obtain:〈
λ(1),a1((1 3))

〉
+
〈
λ(2),a2((1 3))

〉
= 0.
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Repeating this argument with other simple transpositions such as (1 4), (1 5), and (1 6), we obtain a
homogeneous linear system:

A

(
λ(1)

λ(2)

)
= 0,

where

A =

a1(1 3) a2(1 3)
a1(1 4) a2(1 4)
a1(1 5) a2(1 5)
a1(1 6) a2(1 6)

 .

It can be checked that when α ̸= α0, the matrix A has full rank, Since the points
(dα0

(π), ḋα0
(π), dα(π), ḋα(π)) for different transpositions (1 k) involve distinct powers of |k − 1|

under α and α0, and the functions α 7→ |k−1|α and α 7→ log |k−1|·|k−1|α are linearly independent
for different k, the matrix A is full rank whenever α ̸= α0. As a result, λ(1) = λ(2) = 0. Thus,
no nontrivial linear relation exists, contradicting the assumption that Covα0,β0

(a1(Π),a2(Π)) is
singular. This completes the proof of local invertibility.

Lemma B.3 (Properness). For any α, the function fα is proper: the preimage of every compact set
is compact.

Proof. Let K ⊂ Img(f α̃) be any compact set. We must show that f−1
α̃ (K) is compact. Suppose for

contradiction that f−1
α̃ (K) is not compact. Then there exists a sequence (αm, βm) in f−1

α̃ (K) that
escapes to infinity, meaning

lim
m→∞

∥(αm, βm)∥ =∞.

As (αm, βm)→∞, the corresponding distributions Pαm,βm concentrate on the identity permutation.
To see this as (αm, βm)→∞, either αm →∞ or βm →∞ or both. In any of these cases, for any
permutation π ̸= id, we have

Pαm,βm
(π)

Pαm,βm(id)
= exp (−βm(dαm(π)− dαm(id)))→ 0.

Thus, as m increases,
f α̃(αm, βm)→ 0.

But note that for any finite (α, β) ∈ (0,∞)2, we always have:

Eα,β [dα̃(Π)] > 0, Eα,β [ḋα̃(Π)] > 0,

since Pα,β has full support on Sn, and dα̃(Π) > 0 with positive probability. Therefore, 0 /∈ Img(f α̃).
Now, since f α̃(αm, βm) ∈ K for all m, and f α̃(αm, βm) → 0, we conclude that 0 ∈ K by
closedness of K. This contradicts 0 /∈ Img(f α̃). Therefore, the preimage f−1

α̃ (K) must be compact.

Now, to finish the proof of uniqueness of the critical point, observe that the condition Ψ(θ) = 0 is
equivalent to

fα(α, β) = fα(α0, β0).

Since fα is a global diffeomorphism (by Lemmas B.2 and B.3), it follows that (α, β) = (α0, β0),
and hence Ψ(θ0) = 0 has a unique solution.

To complete the identifiability condition, we note that the global invertibility of fα implies that
its inverse f−1

α is continuous on its image. Therefore, Ψ(θ) = fα(α0, β0)− fα(θ) is continuous,
vanishes only at θ0, and cannot tend to zero along any sequence staying at distance at least ε > 0
from θ0. Thus, for every ε > 0,

inf
∥θ−θ0∥≥ε

∥Ψ(θ)∥ > 0,

as required.
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Uniform Convergence of Ψm. Next we prove uniform convergence of Ψm to Ψ. Note that if the
true-parameters of Mallows (α0, β0) where restricted to a compact set, then this was immediate. But
the proof for general parameters needs careful analysis which we bring next.

First, fix any compact rectangle

ΘR := [1/R,R]× [1/R,R] ⊂ (0,∞)× (0,∞),

for some R > 1. Over ΘR, Ψm(θ) and Ψ(θ) are uniformly bounded and equicontinuous as functions
of θ. Thus, by pointwise convergence along with the law of large numbers, we have

sup
θ∈ΘR

∥Ψm(θ)−Ψ(θ)∥ P−→ 0.

Now, outside ΘR (that is, for θ /∈ ΘR), we claim that ∥Ψ(θ)∥ is bounded away from zero for large R,
and hence the sequence θm lies inside ΘR for some large R. Indeed, as ∥θ∥ → ∞, we know from
the properness of fα (Lemma B.3) that ∥Ψ(θ)∥ → ∞ which implies that

inf
θ/∈ΘR

∥Ψ(θ)∥ ≥ δR > 0

for some δR > 3ε (depending on R). Now, consider any θ /∈ ΘR. By the pointwise convergence of
Ψm(θ)→ Ψ(θ) as m→∞ for each fixed θ. Thus, for each fixed θ /∈ ΘR, given any small δ > 0,
there exists m0(θ, δ) such that for all m ≥ m0,

P (∥Ψm(θ)−Ψ(θ)∥ ≤ ε) ≥ 1− δ.

Moreover, since ∥Ψ(θ)∥ ≥ 3ε, if ∥Ψm(θ)−Ψ(θ)∥ ≤ ε, then by the triangle inequality:

∥Ψm(θ)∥ ≥ ∥Ψ(θ)∥ − ∥Ψm(θ)−Ψ(θ)∥ ≥ 2ε.

Therefore Ψm(θ) ̸= 0 for θ ̸∈ ΘR and all m large enough. But by the first order optimality conditions
we must have Ψm(θm) = 0. As a result we must have the sequence is contained in a compact set i.e.,
for some large enough R, we have that θm ∈ ΘR with high probability as m→∞. Since Ψm has
no minimizer outside ΘR then by applying Theorem 5.9 of van der Vaart [46], we conclude that

θ̂m = (α̂m, β̂m)
P−→ (α0, β0).

Asymptotic Normality. The final step to prove asymptotic normality by Theorem 5.23 of van der
Vaart [46]. We verify the conditions of this theorem for the M-estimator (α̂m, β̂m), defined as the
maximizer of the empirical objective ℓm(θ).

(i) Consistency: Established previously using Theorem 5.9.

(ii) Differentiability: The log-likelihood ℓm(θ) is twice continuously differentiable in θ = (α, β)
because both dα(π, σ0) and Z(α, β) are smooth in α and β.

(iii) Central Limit Theorem for the Score: By the classical central limit theorem, the empirical average
of the first term of Ψm converges in distribution:

√
m

 1

m

m∑
j=1

(
β0 ḋα0

(π(j))
dα0(π

(j))

)
− E

[(
β0 ḋα0(Π)
dα0

(Π)

)] d−→ N (0, B),

where B is the variance of the score under Pα0,β0,σ0
.

(iv) Hessian convergence: The Hessian ∇2
θℓm(θ) is the sum of an empirical average and ∇2 lnZ(θ),

both of which converge uniformly by the law of large numbers and analytic smoothness of Z.

(v) Invertibility: The matrix I(α0, β0) = −∇2ℓ(θ0) is positive definite due to identifiability of Ψ
(Lemma B.1). Thus, all conditions of Theorem 5.23 are satisfied, and the result follows.

B.3 Asymptotic Normality under Approximate Score

Proof of Theorem 2.6. Let θ̂m be the exact MLE, satisfying Ψm(θ̂m) = 0. Using Theorem 2.4,
√
m(θ̂m − θ0)

d−→ N (0, I−1).
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We now analyze the perturbation due to the approximate score:

Ψ̃m(θ̃m) = Ψm(θ̃m) + ∆(θ̃m) = 0.

Since Ψm(θ̂m) = 0 and Ψ̃m(θ̃m) = 0, we write:

Ψ̃m(θ̃m) = Ψm(θ̃m) + ∆(θ̃m) = 0,

which implies:
Ψm(θ̃m) = −∆(θ̃m).

Now apply a first-order Taylor expansion of Ψm around θ̂m:

Ψm(θ̃m) = Ψm(θ̂m) +∇Ψm(θ̂m)(θ̃m − θ̂m) +Rm,

where Rm is the second-order remainder:

Rm = o(∥θ̃m − θ̂m∥).

Since Ψm(θ̂m) = 0, this gives:

∇Ψm(θ̂m)(θ̃m − θ̂m) = −∆(θ̃m) + o(∥θ̃m − θ̂m∥).

By assumption,∇Ψm(θ̂m)
P−→ I(θ0), which is invertible. Thus, for large enough m, we can solve:

θ̃m − θ̂m = −∇Ψm(θ̂m)−1∆(θ̃m) + o(∥θ̃m − θ̂m∥).
Using the bound ∥∆(θ̃m)∥ = o(m−1/2), we conclude:

∥θ̃m − θ̂m∥ = oP (m
−1/2)⇒ √m(θ̃m − θ̂m) = oP (1).

Combining with the asymptotic normality of θ̂m,
√
m(θ̃m − θ0) =

√
m(θ̂m − θ0) + oP (1)

d−→ N (0, I−1).

C Proofs for Efficient Sampling

C.1 Geometric Decay of Marginal Distributions

The main goal of this section is proving Lemma 3.2. We break the argument into a few steps. The
first observation is that the marginal probability is symmetric in i and j, i.e., we claim that

Pn(i, j) = Pn

(
n+ 1− j, n+ 1− i

)
.

This is true because of a standard relabeling argument implies that the probability of having π(i) = j
is the same as the probability of having π(n+ 1− j) = n+ 1− i once we account for symmetry in
dα. Therefore, without loss of generality, it is enough to prove that for j − i > k,

Pn(i, j + 1)

Pn(i, j)
≤ c(α, β).

To proceed with the rest of the proof, we need the following definitions. Define the sets of permuta-
tions:

S(i,j) := {π ∈ Sn : π(i) = j} and S(i,j+1) := {π ∈ Sn : π(i) = j + 1}.
and the weight function w : Sn → R+ for a permutation π, which assigns to each permutation π its
corresponding probability weight:

w(π) := e−βdα(π,id) =

n∏
i=1

e−β|i−π(i)|α . (3)
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i l i l

j j + 1 j j + 1

φl : π ∈ S
(i,j+1)

(l,j) π ∈ S
(i,j)

(l,j+1)
→

Figure 5: A schematic of the first mapping.

For any subset S ⊆ Sn, we extend this definition, with a slight abuse of notation, to the total weight
of S as w(S) =

∑
π∈S w(π).

In broad terms, the proof compares the weights of two sets of permutations S(i,j) and S(i,j+1). In

fact, Pn(i,j+1)
Pn(i,j)

= w(S(i,j+1))
w(S(i,j))

. Thus, our objective is to prove
w(S(i,j+1))

w(S(i,j))
< c(α, β) for large j − i.

For this purpose we find mappings from permutations in w(S(i,j+1)) to w(S(i,j)) that shows the total
weight ratio is bounded.

• First Round of Mappings (Proposition C.1). We break down the set S(i,j+1) by looking
at which index was mapped to j. We build a mapping (a “swap”) that sends permutations
in S

(i,j+1)
(l,j) := {π ∈ Sn : π(i) = j + 1, π(l) = j} to the permutations in S

(i,j)
(l,j+1) := {π ∈

Sn : π(i) = j, π(l) = j + 1}.
- If l > j, we show the weight increases – directly helping us prove S(i,j+1) is smaller in
total weight.
- If l ≤ j, the mapping might decrease the weight, so we cannot immediately conclude a
reduction.

• Second Round of Mappings (Proposition C.2). For the “problematic” subset where l ≤ j,
we employ a second mapping by identifying the first index (larger than j) mapped to a value
below j. Swapping this index with l brings the resulting permutation closer to identity,
leading to an increased weight.

Finally, by uniting these two mapping arguments, we conclude Pn(i,j+1)
Pn(i,j)

< 1. We now present the
two mapping steps in detail.

C.1.1 First Round of Mappings

The first round of mapping is described above is done by swapping inverse of j and j + 1 which
gives the following bounds.

Proposition C.1. Suppose j > i, and let S(i,j+1)
(l,j) and S

(i,j)
(l,j+1) be defined as above. Then for any

l ∈ [n] \ {i}, and any k ≤ j − i,

w(S
(i,j+1)
(l,j) )

w(S
(i,j)
(l,j+1))

≤
{
e−β((k+1)α−kα)e−β((j+1−l)α−(j−l)α) l > j

e−β((k+1)α−kα)eβ((j+1−l)α−(j−l)α) l ≤ j
.

Proof. Define the map φℓ : S
(i,j+1)
(ℓ,j) → S

(i,j)
(ℓ,j+1) by swapping the images of i and ℓ in any permuta-

tion π (see Figure 5). More precisely,

(φℓ ◦ π)(i) = π(ℓ), (φℓ ◦ π)(ℓ) = π(i), (φℓ ◦ π)(m) = π(m) for m ̸= i, ℓ.

By direct inspection,

log
w(π)

w(φl(π))
=− β (|j + 1− i|α + |j − l|α) + β (|j − i|α + |j + 1− l|α) (4)

≤ (−β(k + 1)α + β(k)α) + (−β|j − l|α + β|j + 1− l|α) . (5)

24



A simple bounding argument shows that the second term (−β|j − l|α + β|j + 1− l|α) is ≤ 0 if
ℓ > j. Since the upper bound is independent of π, by summing over all such π ∈ S

(i,j+1)
(ℓ,j) we finish

the proof.

C.1.2 Handling the Problematic Cases with a Second Mapping

· · · l · · · j + 1 . . . η − 1 η

1 . . . j − 1 j j + 1

ρl : π ∈ S
(i,j)

(l,j+1) →

j + 2 . . . n

· · · l · · · j + 1 . . . η − 1 η

1 . . . j − 1 j j + 1

π ∈ S
(i,j)

(j+,j+1)

j + 2 . . . n

Figure 6: A schematic of the second mapping.

For l ≤ j, we handle those cases by constructing a second mapping that locates a suitable index that
swapping it with l will get a closer mapping to the central ranking (here identity). See Figure 6.

Proposition C.2. Let l ≤ j. Also define, S(i,j)
(j+,j+1) =

⋃
k≥j+1 S

(i,j)
(k,j+1). Then

w(S
(i,j)
(l,j+1))

w(S
(i,j)
(j+,j+1))

≤ e−β(j−l)α+β|j−1−l|α .

Proof. Fix a permutation π ∈ S
(i,j)
(ℓ,j+1). The first step is to find a mapping that maps π to another

permutation in S
(i,j)
(j+,j+1) For each permutation π ∈ S

(i,j)
(ℓ,j+1), there exists at least one index η ∈

{j+1, . . . , n} such that π(η) ≤ j− 1. This is true because there are n− j indices in {j+1, . . . , n},
but π(ℓ) = j + 1 forces at most n− j − 1 of those indices to map above j + 1. Define ηπ to be the
smallest such index i.e., ηπ := min

{
m ∈ {j + 1, . . . , n} : π(m) ≤ j − 1

}
.

Using this, we define the projection ρl : S
(i,j)
(l,j+1) → S

(i,j)
(j+,j+1), by swapping (l, ηπ) in the permutation

π, i.e.,

(ρℓ ◦ π)(l) = π(ηπ), (ρℓ ◦ π)(ηπ) = π(l), (ρℓ ◦ π)(m) = π(m) for m ̸= ηπ, ℓ.

Injectivity. The map ρl is one-to-one, but not onto. In fact, for any k ≥ j + 1, any permutation
π′ ∈ S

(i,j)
(k,j+1), can be uniquely inverted by swapping l and the corresponding k if it satisfies being in

the image of ρl, i.e.,

ρ−1
l (π′) =

{
(l, k)× π′ if π′(l) ≤ j − 1 and π′(s) > j + 1 for s ∈ {j + 1, j + 2, . . . , k}
null otherwise.

(6)

See Figure 6. Hence, summing over π ∈ S
(i,j)
(l,j+1) and comparing to ρl(π) in the codomain involves

no collisions.

Weight Change. Under the swap ρk, the weight w(π) can change by a factor

w(π)

w(ρl(π))
= exp

(
− β

(
(j + 1− l)α + (ηπ − π(ηπ))

α − (ηπ − j − 1)α − |l − π(ηπ)|α
))

.
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Now, if we sum up over all possible values of ηπ ≥ j + 1, we get

w(S
(i,j)
(l,j+1)) =

n∑
k=j+1

∑
π′∈S

(i,j)

(k,j+1)
:

ρ−1
l (π′ )̸=null

w(ρ−1
l (π′))

=

n∑
k=j+1

∑
π′∈S

(i,j)

(k,j+1)
:

ρ−1
l (π′ )̸=null

w(π′) exp
(
− β

(
(j + 1− l)α + (k − π(k))α − (k − j − 1)α

− |l − π(k)|α
))

.

Define a(j, k, l, π(k)) := exp
(
−β
(
(j+1−l)α+(k−π(k))α−(k−j−1)α−|l−π(k)|α

))
. Observe

that a(j, k, l, π(k)) achieves its maximum when π(k) achieves its highest value, i.e., π(k) = j − 1.
Now, substituting π(k) = j − 1, the function a(j, k, l, j − 1) is decreasing in k, and since k ≥ j + 1,

a(j, k, l, π(k)) ≤ a(j, j + 1, l, j − 1) = a(j, l), (7)
where a(j, l) := exp (−β(j + 1− l)α + β|j − 1− l|α). As a result, we prove the claim:

w(S
(i,j)
(l,j+1)) ≤ a(j, l)

n∑
k=j+1

∑
π′∈S

(i,j)

(k,j+1)
:

ρ−1
l (π′ )̸=null

w(π′) ≤ a(j, l)w(S
(i,j)
j+,j+1).

C.1.3 Geometric Decay Bound (Proof of Lemma 3.2)

Lemma C.3. From Propositions C.1 and C.2, it follows that for sufficiently large k, for all n and j, i
satisfying j − i ≥ k,

Pn(i, j + 1)

Pn(i, j)
≤ C(α, β) < 1,

where C(α, β) = e−βαkα−1

α−1

Γ( 1
α−1 )

(βα)
1

α−1
for α > 1, and C(1, β) = 2e−2β

1+e−2β

Proof. By applying Proposition C.1, for j − i ≥ k,

Pn(i, j + 1)

Pn(i, j)
≤e−β(k+1)α+β(k)α

∑
l∈[n] e

−β|j−l|α+β|j+1−l|αw(S
(i,j)
(l,j+1))∑

l∈[n] w(S
(i,j)
(l,j+1))

(8)

≤e−β(k+1)α+β(k)α
w(S

(i,j)
(j+,j+1)) +

∑j
l=1 e

−β|j−l|α+β|j+1−l|αw(S
(i,j)
(l,j+1))

w(S
(i,j)
(j+,j+1)) +

∑j
l=1 w(S

(i,j)
(l,j+1))

(9)

=e−β(k+1)α+β(k)α
1 +

∑j
l=1 e

−β|j−l|α+β|j+1−l|α w(S
(i,j)

(l,j+1)
)

w(S
(i,j)

(j+,j+1)
)

1 +
∑j

l=1

w(S
(i,j)

(l,j+1)
)

w(S
(i,j)

(j+,j+1)
)

, (10)

where in the second inequality we used the fact that for l > j, the coefficient e−β|j−l|α+β|j+1−l|α is
less than 1.

Now, we can use the second mapping (Proposition C.2) to derive the desired upper bound. To
see this, note that the coefficients in the numerator are greater than 1, in fact, for l ≤ j, we have
exp(−β(j − l)α + β(j + 1− l)α) ≥ exp(β). Therefore, we can apply Proposition C.2,

Pn(i, j + 1)

Pn(i, j)
≤e−β(k+1)α+β(k)α 1 +

∑j
l=1 e

−β|j−l|α+β|j+1−l|αa(j, l)

1 +
∑j

l=1 a(j, l)
,

where as before a(j, l) = exp (−β(j + 1− l)α + β|j − 1− l|α). We now consider two cases based
on the value of α.
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Case α > 1: In this case, we can rewrite the numerator

j∑
l=1

e−β|j−l|α+β|j+1−l|αa(j, l) = eβ +

j−1∑
i=0

e−β((i+1)α−iα) ≤ eβ +

j−1∑
i=0

e−βαiα−1

.

For the denominator, we use the trivial lower bound of 1. Therefore,

Pn(i, j + 1)

Pn(i, j)
≤ e−β(k+1)α+β(k)α

(
1 +

(
eβ +

j−1∑
i=0

e−βαiα−1))
.

For α > 1, the following limit exists: limj→∞
∑j−1

i=0 e−βαiα−1

= C∞(α, β). Also, note that

C∞(α, β) ≤
∫∞
0

e−βαxα−1

dx = 1
α−1

Γ( 1
α−1 )

(βα)
1

α−1
. Also note that e−β((k+1)α−kα) ≤ e−βαkα−1

. There-

fore,
Pn(i, j + 1)

Pn(i, j)
≤ e−βαkα−1

C∞(α, β).

So, if we choose k large enough we can see that Pn(i,j+1)
Pn(i,j)

is bounded by a constant smaller than 1.
In fact,

Pn(i, j + 1)

Pn(i, j)
≤ e−βαkα−1

α− 1

Γ
(

1
α−1

)
(βα)

1
α−1

.

Case α = 1: By directly applying α = 1 in (8), we get

Pn(i, j + 1)

Pn(i, j)
≤ e−β

e−βw(S
(i,j)
(j+,j+1)) + eβw(S

(i,j)
(j−,j+1))

w(S
(i,j)
(j+,j+1)) + w(S

(i,j)
(j−,j+1))

.

Now, note that for α = 1, the value of a(j, l) is equal to exp(−2β). Therefore, w(S(i,j)
(j−,j+1)) ≤

e−2βw(S
(i,j)
(j+,j+1)). Thus,

Pn(i, j + 1)

Pn(i, j)
≤ e−β

(
e−β +

(eβ − e−β)w(S
(i,j)
(j−,j+1))

w(S
(i,j)
(j+,j+1)) + w(S

(i,j)
(j−,j+1))

)
≤ e−β(e−β + (eβ − e−β)

e−2β

1 + e−2β
)

=
e−2β(2− e−2β)

1 + e−2β
≤ 2e−2β

1 + e−2β
< 1

Finishing the proof of the lemma in both cases.

C.2 Proof of Lemma 3.3

We start by using Lemma 3.2 to prove the following claim.

Claim Given the conditions of Theorem 3.1, there exists constants c < 1, k > 0 and γ such that for
any i ∈ [n], ∑

j:|j−i|>k

Pn(i, j) ≤ γck.

Proof. Consider a fixed index i. Let C(α, β) < 1 and k be the constants from Lemma 3.2 such that
for any j satisfying j − i > k,

Pn(i, j) ≤ C(α, β)Pn(i, j − 1) ≤ C(α, β)|j−i|−kPn(i, i+ k).

A similar bound holds for Pn(i, j) when j < i− k.
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To bound the sum of probabilities where the deviation exceeds k, we split the summation into
deviations to the right and deviations to the left of i:∑

j:|j−i|>k

Pn(i, j) =
∑

j>i+k

Pn(i, j) +
∑

j<i−k

Pn(i, j).

Applying the geometric decay bound to each term, we obtain∑
j:|j−i|>k

Pn(i, j) ≤
∑

j>i+k

C(α, β)j−iPn(i, i+ k)

C(α, β)k
+
∑

j<i−k

C(α, β)i−j Pn(i, i− k)

C(α, β)k
.

Recognizing that both sums are identical in form, we can combine them:∑
j:|j−i|>k

Pn(i, j) ≤
(Pn(i, i− k)

C(α, β)k
+

Pn(i, i+ k)

C(α, β)k

) ∞∑
k=k+1

C(α, β)k.

The infinite geometric series
∑∞

k=k+1 C(α, β)k converges to C(α,β)k+1

1−C(α,β) . Therefore, with γ =

2 Pn(i,i+k)
C(α,β)k(1−C(α,β))

and c = C(α, β), we have the proof of claim.

Now, we are ready to prove Lemma 3.3.

Proof of Lemma 3.3. We start with the first part. Let S(k)
n be the set of permutations that maps at

least one element further than k, i.e., S(k)
n = {π ∈ Sn : ∃i ∈ [n] s.t. |i− π(i)| > k}. Note that for

any π ∈ S
(k)
n , P(k)

α,β(π) = 0 ≤ Pα,β(π), and for any π ∈ Sn \ S(k)
n , P(k)

α,β(π) ≥ Pα,β(π). Hence, the

set of permutation that have a higher value over P is exactly S
(k)
n , i.e.,

{π ∈ Sn : Pα,β(π) > P(k)
α,β(π)} = S(k)

n

Therefore, by the definition of the total-variation distance,

∥Pα,β − P(k)
α,β∥tv = 2(Pα,β(S

(k)
n )− P(k)

α,β(S
(k)
n )) = 2Pα,β(S

(k)
n )

Define S
(k)
n,i = {π ∈ Sn : |i− π(i)| > k}. Therefore, S(k)

n =
⋃

i S
(k)
n,i . Let c be the constants given

by the claim above. Then if we choose k = log(2n/ϵ)
− log(c) , by applying the result of the claim,

Pα,β(S
(k)
n,i ) ≤

∑
|j−i|>k

Pn(i, j) ≤
ϵ

2n

As a result,

Pα,β(S
(k)
n ) ≤

n∑
i=1

Pα,β(S
(k)
n,i ) ≤ n

ϵ

2n
=

ϵ

2

So, we conclude that ∥Pα,β − P(k)
α,β∥tv ≤ ϵ.

Now, we prove the bound on the permanent. Recall the function w : Sn → R+ is the weight of each
permutation:

w(π) =

n∏
i=1

e−β|i−π(i)|α .

Note that
per(An)− per(A(k)

n ) =
∑

π∈S
(k)
n

w(π) = per(An)Pα,β(S
(k)
n ).

By applying total variation bound,

Pα,β(S
(k)
n ) ≤

n∑
i=1

Pα,β(S
(k)
n,i ) ≤ n

ϵ

n
≤ ϵ,

we get the second part of lemma:

per(An)− per(A
(k)
n )

per(An)
≤ Pα,β(S

(k)
n ) ≤ ϵ
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C.3 Details of the Sampling Algorithm

In this section, we present the omitted details of how the sampling algorithm operates, explicitly
using dynamic programming (DP).

DP states. We structure our DP algorithm into layers, where each layer corresponds to assigning a
row to a column. By assigning row i to column j, we mean the permutation π is constructed such
that π(i) = j. Specifically, we define DP states and transitions as follows:

• We have n+ 1 layers indexed by i = 0, . . . , n, representing stages in which rows 1, . . . , n
are sequentially assigned to columns.

• Each DP state at layer i (for i = 0, 1, . . . , n) captures which columns are still available to
assign at that stage. Due to the truncation, element i can only be assigned to columns within
a bandwidth of ±k around position i. Thus, each DP state is represented succinctly by a
binary vector of length 2k, where a ’0’ indicates an available column and a ’1’ indicates an
assigned column.

• The initial DP state at layer −1 is set to "1. . . 10. . . 0", a binary string with k ones followed
by k zeros. We initialize DP [−1]["1. . . 10. . . 0"] = 1.

DP Transitions and Updates. Transitions between DP states from layer i− 1 to layer i occur by:

1. Left-shifting the binary vector from the state at layer i− 1, appending a new ’0’ to the right
to indicate a new available column for row i.

2. Flipping exactly one of the ’0’s to ’1’, representing the assignment of the current element i
to a specific column. Precisely, assigning element i to column j corresponds to flipping the
bit indexed by i− j + k. The edge’s weight for this assignment is exp(−β|i− j|α).

Each DP state at layer i thus has exactly k bits set to ’1’. The cumulative weight of reaching state
snew at layer i is updated as:

DP [i][snew] =
∑
sold

DP [i− 1][sold] ×
(
A(k)

n [i, col_selected(sold→snew)]
)
,

where the sum is over all valid predecessor states sold. Here, col_selected(sold → snew) denotes the
bit flipped during the transition.

Sequential Sampling from the DP Table. The sampling begins from the terminal state at layer
n, denoted by the binary vector "1. . . 10. . . 0". At each step i = n, n− 1, . . . , 0, we move backward
through the DP table, selecting a predecessor state at layer i− 1 with probability proportional to the
corresponding DP state weight. The bit flipped during this transition identifies the column assigned
to element i. This sequential backward pass continues until reaching the initial state at layer −1, thus
completing the permutation.

The final permutation sampled this way precisely follows the truncated distribution P̂(k)
n . Algorithms

explicitly detailing these DP state constructions and sampling procedures are provided in Algorithms 2
and 3. Note the DP state space size at each layer is

(
2k
k

)
, with at most k predecessors per state.

Therefore, the forward DP computation and backward sampling both run in time O
(
nk
(
2k
k

))
.

C.4 Proof of Lemma 3.4

Proof. We proceed by induction on the layers, and we show that DP [i][s] is equal to the cumulative
weights of all partial assignments up to i given the availability of assignments corresponding to s.

Base case i = 0 holds by definition, since DP [0][s0] = 1. Assume that for some i ≥ 0, the DP table
correctly stores the cumulative weights of all partial assignments up to layer i for every state s in
layer i. That is, for each state s in layer i,

DP [i][s] =
∑

π∈Si(s)

i∏
j=1

A(k)
n [j, π(j)],
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where Si(s) denotes the set of all partial permutations up to layer i that result in state s.

For the induction step, we need to show that the DP table correctly computes DP [i+ 1][s′] for each
state s′ in layer i + 1. Consider a state s′ in layer i + 1. Let s be the predecessor state in layer i,
and let j be the column to which row i+ 1 is assigned, corresponding to the flipped bit in s′. The
cumulative weight for state s′ is updated as:

DP [i+ 1][s′] =
∑

s∈Pred(s′)

DP [i][s]×A(k)
n [i+ 1, j],

where Pred(s′) denotes all predecessor states s that can transition to s′.

By induction hypothesis:

DP [i][s] =
∑

π∈Si(s)

i∏
j=1

A(k)
n [j, π(j)].

Substituting into the previous equation:

DP [i+ 1][s′] =
∑

s∈Pred(s′)

 ∑
π∈Si(s)

i∏
j=1

A(k)
n [j, π(j)]

×A(k)
n [i+ 1, j].

This can be rewritten as:

DP [i+ 1][s′] =
∑

s∈Pred(s′)

∑
π∈Si(s)

i+1∏
j=1

A(k)
n [j, π(j)],

which is precisely:

DP [i+ 1][s′] =
∑

π∈Si+1(s′)

i+1∏
j=1

A(k)
n [j, π(j)],

where Si+1(s
′) denotes the set of all partial permutations up to layer i+1 that result in state s′. Thus,

the DP table correctly accumulates the weights for all states in layer i+ 1.

After processing all n layers, the final layer n contains the terminal state sn = “1 · · · 1 0 · · · 0”.
The value DP [n][sn] equals per(A(k)

n ), as it sums over all valid permutations π ∈ Sn weighted by∏n
j=1 A

(k)
n [j, π(j)].

Sampling Correctness: The sampling procedure performs a backward traversal from the terminal
state sn to the initial state s0. At each step i = n, n− 1, . . . , 1, the algorithm selects a predecessor
state s with probability proportional to the weight of the edge connecting s to s′. Formally, the
probability of transitioning from s to s′ is:

P (s→ s′) =
DP [i− 1][s′]A

(k)
n [i, j]

DP [i][s]
,

where j is the column assigned at this transition. By the inductive construction of the DP table, these
transition probabilities ensure that the probability of sampling a path corresponding toπ is:

n∏
i=0

DP [i− 1][s′]A
(k)
n [i, π(i)]

DP [i][s]
=

∏n
j=1 A

(k)
n [j, π(j)]

DP [n][s0]
=

∏n
j=1 A

(k)
n [j, π(j)]

per(A(k)
n )

= P̂(k)
α,β(π).

Therefore, the algorithm correctly samples permutations according to P̂(k)
α,β .

Time Complexity: The algorithm involves two main phases: building the DP table and performing
the backward sampling. There are n layers and

(
2k
k

)
nodes per layer. Each state has at most k

predecessors (since exactly one ’0’ is flipped to ’1’ within a window of 2k positions), and each
transition involved constant time multiplication and addition. Therefore, the total time to build the
DP table is:

O

(
n ·
(
2k

k

)
· k
)
.
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Using the approximation
(
2k
k

)
≤ 4(k)

√
πk

(from Stirling’s formula), the time complexity becomes:

O

(
n · 4

k

√
k
· k
)

= O
(
n · 4k ·

√
k
)
.

After the DP is constructed, Algorithm 3 generates samples from P̂(k)
α,β in time O(nk). Using

Lemma 3.3, to achieve ϵ total variation distance with true Mallows we need to set k = log(n/ϵ)
log(1/C(α,β))

where C(α, β) < 2exp(−2β)
1+exp(−2β) is given by Lemma 3.2. So the runtime of computing permanent and

preprocessing for sampling is with ϵ error is O
(
n1− 2

log(C(α,β)) ϵ
2

log(C(α,β)) log(n/ϵ)
)

C.5 Pseudo-code: Sampling From Mallows Model

Algorithm 2: Build DP Table for Sampling

Input :n, k ∈ N; Truncated matrix A
(k)
n with bandwidth 2k.

Output :DP States

DP ← array of dictionaries indexed by ℓ = −1, 0, . . . , n;
Define init_state← 11 · · · 1︸ ︷︷ ︸

k

00 · · · 0︸ ︷︷ ︸
k

;

DP [−1][init_state]← ∅ ; // Initialization layer with one node.

for ℓ← 0 to n do
foreach state sold in DP [ℓ− 1] do

sshift ← sold[1 :] + 0 ; // Remove leftmost bit and append a ‘0’.
;
for i← 0 to 2k − 1 do

if sshift[i] = 0 then
snew ← FlipBit(sshift, i);
j ← ℓ− (i− k) ; // Column j assigned to row ℓ.
wedge ← A

(k)
n [ℓ, j] ; // Edge weight.

if snew /∈ DP [ℓ] then
DP [ℓ][snew]← ∅;

Append (snew, wedge) to DP [ℓ− 1][sold];

return DP
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Algorithm 3: Sample a Permutation from the DP Table
Input : DP table DP[ℓ][s] containing cumulative weights.
Output :Sampled permutation π ∈ Sn.

Initialize π[1..n] as an empty array;
scurrent ← 11 · · · 1︸ ︷︷ ︸

k

00 · · · 0︸ ︷︷ ︸
k

; // Start from final state at layer n.

for ℓ← n to 1 do
predList ← ∅ ; // Collect predecessors of scurrent.
foreach (sold, wedge) in DP [ℓ− 1][·] do

if (sold → scurrent) is valid then
Let j ← column assigned in this transition;
score ← DP[ℓ− 1][sold]× wedge;
Append (sold, j, score) to predList ;

Normalize scores in predList to form a probability distribution;
Randomly select (sold, j, score) w.r.t. these probabilities;
π[ℓ]← j ; // Assign column j to row ℓ.
scurrent ← sold;

return π

D Additional Implementation Details

Evaluation metrics. We evaluate predictive accuracy using the following metrics, comparing the
test ranking π and the predicted ranking σ:

1. Top-1/Top-5 Hit Rate: Probability the top-ranked item in π appears in the top-1 or top-5
positions of σ:

Top-k Hit rate = Pr
(
π(1) ∈ {σ(1), · · · , σ(k)}

)
. (11)

2. Spearman’s ρ: Correlation based on squared rank differences:

ρ = 1− 6
∑n

i=1(π(i)− σ(i))2

n(n2 − 1)
.

3. Kendall’s τ : Correlation based on pairwise agreements as defined by dτ in Section 4.

4. Hamming Distance: Fraction of positions with differing ranks:

H =
1

n

n∑
i=1

1{π(i) ̸= σ(i)}.

5. Pairwise Accuracy: Fraction of item pairs with matching relative orders:

Pairwise Accuracy =

∑
i<j 1{(π(i)− π(j))(σ(i)− σ(j)) > 0}(

n
2

) .

In practice, all evaluation metrics are computed using Monte Carlo methods. We generate 100
predicted ranking samples from each trained model and estimate the metrics empirically. These
empirical estimates approximate the true population-level metrics.

Baseline Implementation Details As mentioned in 4.1, we compare against the Plackett-Luce (PL)
and Mallow’s τ model.

We fit the PL model via maximum likelihood estimation:

L(θ;π(1), . . . , π(m)) =

m∑
ℓ=1

n∑
i=1

θπ(ℓ)(i) − log

 n∑
j=i

exp(θπ(ℓ)(j))

 . (12)
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We optimize the negative log-likelihood using the L-BFGS algorithm [25]. Additionally, we provide
a fast sampler for the PL model using the Gumbel–Max [49, 28] to generate synthetic permutations:

π = arg sort (−(θ + ϵ)) , ϵ ∼ Gumbel(0, 1)n, (13)

where sorting is done in descending order to reflect best-to-worst preferences.

To fit the Mallows τ model, note that its normalizer has a closed form [16]:

Z(β) =

n∏
j=1

1− e−jβ

1− e−β
.

Again, we do maximum likelihood estimation where the log-likelihood of the Mallows τ model is:

L(σ, β;π(1), . . . , π(m)) = −β
m∑
ℓ=1

dτ (π
(ℓ), σ)−m logZ(β).

We perform maximum likelihood estimation by:

• Setting the central ranking σ0 to the Borda count aggregation over training rankings.
• Optimizing β using numerical minimization of the negative log-likelihood.

To generate samples from the Mallows–τ model, we use the exponential insertion algorithm by
[26]. At each step, an item from σ0 is inserted into a position within the partial permutation with
probability proportional to exp(−β · reverse_index), favoring positions near the end. This yields
efficient forward sampling in O(n2) time.
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